Home
Class 12
MATHS
Let f be the function defined on [-pi,pi...

Let `f` be the function defined on `[-pi,pi]` given by `f(0)=9` and `f(x)=sin((9x)/2)/sin(x/2)` for `x!=0`. The value of `2/pi int_-pi^pif(x)dx` is (asked as Match the following question)

A

0

B

2

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \, dx \) where \( f(x) = \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \) for \( x \neq 0 \) and \( f(0) = 9 \). ### Step-by-Step Solution: 1. **Recognize the symmetry of the function**: Since \( f(x) \) is defined for \( x \neq 0 \) and \( f(0) = 9 \), we first check if \( f(x) \) is an even function. We calculate \( f(-x) \): \[ f(-x) = \frac{\sin\left(-\frac{9x}{2}\right)}{\sin\left(-\frac{x}{2}\right)} = \frac{-\sin\left(\frac{9x}{2}\right)}{-\sin\left(\frac{x}{2}\right)} = \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} = f(x) \] Thus, \( f(x) \) is an even function. 2. **Use the property of definite integrals**: Since \( f(x) \) is even, we can simplify the integral: \[ \int_{-\pi}^{\pi} f(x) \, dx = 2 \int_{0}^{\pi} f(x) \, dx \] Therefore, we can write: \[ I = \frac{2}{\pi} \cdot 2 \int_{0}^{\pi} f(x) \, dx = \frac{4}{\pi} \int_{0}^{\pi} f(x) \, dx \] 3. **Change of variables**: Let \( x = 2t \) (where \( dx = 2dt \)). The limits change from \( x = 0 \) to \( x = \pi \) to \( t = 0 \) to \( t = \frac{\pi}{2} \): \[ I = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(2t) \cdot 2 \, dt = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} f(2t) \, dt \] Now, substituting \( f(2t) \): \[ f(2t) = \frac{\sin(9t)}{\sin(t)} \] So we have: \[ I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin(9t)}{\sin(t)} \, dt \] 4. **Use the formula for integrals of this form**: The integral \( \int_{0}^{\frac{\pi}{2}} \frac{\sin(nt)}{\sin(t)} \, dt \) is known to equal \( \frac{\pi}{2} \) for integer \( n \). Thus: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin(9t)}{\sin(t)} \, dt = \frac{\pi}{2} \] 5. **Substituting back into the expression for \( I \)**: \[ I = \frac{8}{\pi} \cdot \frac{\pi}{2} = 4 \] 6. **Final result**: Therefore, the value of \( 2/\pi \int_{-\pi}^{\pi} f(x) \, dx \) is: \[ \boxed{4} \]

To solve the problem, we need to evaluate the integral \( I = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \, dx \) where \( f(x) = \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \) for \( x \neq 0 \) and \( f(0) = 9 \). ### Step-by-Step Solution: 1. **Recognize the symmetry of the function**: Since \( f(x) \) is defined for \( x \neq 0 \) and \( f(0) = 9 \), we first check if \( f(x) \) is an even function. We calculate \( f(-x) \): \[ f(-x) = \frac{\sin\left(-\frac{9x}{2}\right)}{\sin\left(-\frac{x}{2}\right)} = \frac{-\sin\left(\frac{9x}{2}\right)}{-\sin\left(\frac{x}{2}\right)} = \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} = f(x) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi) |cos x -sin x|dx is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

Prove that the function f given by f(x) = log sin x" is increasing on "(0,pi/2) and decreasing on (pi/2,pi) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  2. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  3. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  4. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  5. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  8. If inta^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is

    Text Solution

    |

  9. The value of (pi^2)/(1n3)int(7/6)^(5/6)sec(pix)dxi s

    Text Solution

    |

  10. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  11. Let f :(0,1) to (0,1) be a differentiable functino such that f '(x) ne...

    Text Solution

    |

  12. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  13. The following integral int(pi/4)^(pi/2)(2cos e cx)^(17)dx is equal to ...

    Text Solution

    |

  14. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  15. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  16. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  17. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  18. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  19. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  20. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |