Home
Class 12
MATHS
The following integral int(pi/4)^(pi/2)(...

The following integral `int_(pi/4)^(pi/2)(2cos e cx)^(17)dx` is equal to `(a)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(16)d u` `(b)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(17)d u` `(c)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(17)d u` `(d)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(16)d u`

A

`overset(log(1+sqrt(2)))underset(0)int 2(e^(u)+e^(-u))^(16)du`

B

`overset(log(1+sqrt(2)))underset(0)int (e^(u)+e^(-u))^(17)du`

C

`overset(log(1+sqrt(2)))underset(0)int (e^(u)-e^(-u))^(17)du`

D

`overset(log(1+sqrt(2)))underset(0)int 2(e^(u)-e^(-u))^(16)du`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=overset(pi//2)underset(pi//4)int (2 cosec x)^(17)dx` and let `e^(u)+e^(-u)=2 cosec x` Then,
`x=(pi)/(4)rArr e^(u)+e^(-u)=2sqrt(2)`
`rArr(e^(u))^(2)-2sqrt(2)e^(u)+1=0`
`rArr e^(u)=sqrt(2)+1 rArr u=log(1+sqrt(2))x=(pi)/(2)rArr e^(u)+e^(-u)=2`
Now, `e^(u)+e^(-u)=2 cosecx`
`rArr(e^(u))^(2)-(2 cosec x)e^(u)+=0`
`e^(u)=cosecx +cot x`
`rArr e^(-u)=(1)/(cosec x+cot x)=cosec x-cot x`
`:.cotx=(e^(u)-e^(-u))/(2)`
Again,`e^(u)+e^(-u)=2 cosec x`
`rArr (e^(u)-e^(-u))du=-2 cosec x cot x dx`
`rArr dx=-(e^(u)-e^(-u))/(2 cosec x cot x)du`
`rArr dx=-((e^(u)-e^(-u)))/((e^(u)+e^(-u))((e^(u)-e^(-u))/(2)))du`
`rArr dx=(-2)/(e^(u)+e^(-u))du`
`:. I=overset(pi//2)underset(pi//4)int (2 cosec x)^(17)dx`
`rArr I=overset(0)underset(log(1+sqrt(2)))int (e^(u)+e^(-u))^(17)xx(-2)/((e^(u)+e^(-u)))du`
`rArr I=overset(log(1+sqrt(2)))underset(2)int 2(e^(u)+e^(-u))^(16)du`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to a. (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_0^3(3x+1)/(x^2+9)dx = (pi^)/(12)+log(2sqrt(2)) (b) (pi^)/2+log(2sqrt(2)) (c) (pi^)/6+log(2sqrt(2)) (d) (pi^)/3+log(2sqrt(2))

int_0^x{int_0^uf(t)dx}\ du is equal to (a) int_0^x(x-u)f(u)du (b) int_0^x uf(x-u)du (c) x int_0^xf(u)du (d) x int_0^x uf(u-x)du

The value of int_0^(pi/4) (e^(1/(cos^2x)).sinx)/(cos^3 x)dx equals (A) (e^2-e)/2 (B) (e^4-1)/4 (C) (e^2+e)/4 (D) (e^4-1)/2

The value of int_0^(pi//2)cosx\ e^(sin x)dx\ i s a. 1 b. e-1 c. 0 d. -1

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f :(0,1) to (0,1) be a differentiable functino such that f '(x) ne...

    Text Solution

    |

  2. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  3. The following integral int(pi/4)^(pi/2)(2cos e cx)^(17)dx is equal to ...

    Text Solution

    |

  4. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  5. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  6. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  7. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  8. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  9. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  10. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |

  11. Let f:[0,1]rarrR be a differentiable functions with non-increasing der...

    Text Solution

    |

  12. Let f:R to R be a differentiable function such that f(x)=x^(2)+int(0)^...

    Text Solution

    |

  13. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  14. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  15. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  17. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  18. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  19. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  20. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |