Home
Class 12
MATHS
If a function y=f(x) such that f'(x) is ...

If a function y=f(x) such that f'(x) is continuous function and satisfies
`(f(x))^(2)=k+int_(0)^(x) [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) `, then

A

f(x) is an increasing function for all ` x in R`

B

f(x) is a bounded function

C

f(x) is neither even nor odd function

D

If k=100, then f(0)=10.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ (f(x))^2 = k + \int_0^x \left[ (f(t))^2 + (f'(t))^2 \right] dt \] where \( k \) is a positive real number. ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate both sides: \[ \frac{d}{dx}((f(x))^2) = \frac{d}{dx}\left(k + \int_0^x \left[ (f(t))^2 + (f'(t))^2 \right] dt\right) \] The left-hand side becomes: \[ 2f(x)f'(x) \] The right-hand side simplifies to: \[ (f(x))^2 + (f'(x))^2 \] Thus, we have: \[ 2f(x)f'(x) = (f(x))^2 + (f'(x))^2 \] ### Step 2: Rearrange the equation Rearranging gives: \[ 2f(x)f'(x) - (f(x))^2 - (f'(x))^2 = 0 \] ### Step 3: Factor the equation This can be factored as: \[ (f'(x) - f(x))^2 = 0 \] This implies: \[ f'(x) - f(x) = 0 \] ### Step 4: Solve the differential equation The differential equation \( f'(x) = f(x) \) can be solved by separating variables: \[ \frac{df}{f} = dx \] Integrating both sides gives: \[ \ln |f(x)| = x + C \] Exponentiating both sides results in: \[ f(x) = Ce^x \] where \( C = e^C \) is a constant. ### Step 5: Determine the value of \( C \) To find \( C \), we substitute \( x = 0 \) into the original equation: \[ (f(0))^2 = k + \int_0^0 \left[ (f(t))^2 + (f'(t))^2 \right] dt \] This simplifies to: \[ (f(0))^2 = k \] Since \( f(0) = Ce^0 = C \), we have: \[ C^2 = k \implies C = \pm \sqrt{k} \] ### Step 6: Analyze the function Thus, we have: \[ f(x) = \pm \sqrt{k} e^x \] ### Conclusion Now we analyze the properties of \( f(x) \): 1. **Increasing Function**: Since \( e^x > 0 \) for all \( x \), \( f(x) \) is an increasing function for all \( x \in \mathbb{R} \). 2. **Bounded Function**: \( f(x) \) is not bounded as \( e^x \) grows without bound. 3. **Even or Odd Function**: \( f(x) \) is neither even nor odd since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \). 4. **Specific Value of \( k \)**: If \( k = 100 \), then \( C = 10 \) or \( C = -10 \).

To solve the given problem, we start with the equation: \[ (f(x))^2 = k + \int_0^x \left[ (f(t))^2 + (f'(t))^2 \right] dt \] where \( k \) is a positive real number. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If a function y=f(x) such that f'(x) is continuous function and satisfies (f(x))^(2)=k+underset(0)overset(x)int [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) , then find f(x)

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

If f is continuous function and F(x)=int_0^x((2t+3). int_t^2 f(u)du)\ dt , then |(F^(2))/(f(2))| is equal to____ .

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f:R to R be a differentiable function such that f(x)=x^(2)+int(0)^...

    Text Solution

    |

  2. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  3. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  4. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  5. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  6. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  7. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  8. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  9. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  10. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  11. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  12. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  13. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  14. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  15. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  16. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  17. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  18. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  19. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  20. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |