Home
Class 12
MATHS
The maximum value of f(x)=int(0)^(1) t s...

The maximum value of f(x)`=int_(0)^(1) t sin (x+pi t)dt` is

A

`(1)/(pi)sqrt(pi^(2)+4)`

B

`(1)/(pi^(2))sqrt(pi^(2)+4)`

C

`sqrt(pi^(2)+4)`

D

`(1)/(2pi^(2))sqrt(pi^(2)+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \int_0^1 t \sin(x + \pi t) \, dt \), we will follow these steps: ### Step 1: Evaluate the integral We start by evaluating the integral \( f(x) \): \[ f(x) = \int_0^1 t \sin(x + \pi t) \, dt \] ### Step 2: Use integration by parts We will use integration by parts, where we let: - \( u = t \) and \( dv = \sin(x + \pi t) \, dt \) Then, we differentiate and integrate: - \( du = dt \) - \( v = -\frac{1}{\pi} \cos(x + \pi t) \) Using integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ f(x) = \left[ -\frac{t}{\pi} \cos(x + \pi t) \right]_0^1 + \frac{1}{\pi} \int_0^1 \cos(x + \pi t) \, dt \] ### Step 3: Evaluate the boundary terms Evaluating the boundary terms: \[ \left[ -\frac{t}{\pi} \cos(x + \pi t) \right]_0^1 = -\frac{1}{\pi} \cos(x + \pi) + 0 = -\frac{1}{\pi} (-\cos x) = \frac{1}{\pi} \cos x \] ### Step 4: Evaluate the remaining integral Now we need to evaluate the integral \( \int_0^1 \cos(x + \pi t) \, dt \): \[ \int_0^1 \cos(x + \pi t) \, dt = \left[ \frac{1}{\pi} \sin(x + \pi t) \right]_0^1 = \frac{1}{\pi} (\sin(x + \pi) - \sin(x)) = \frac{1}{\pi} (-\sin x - \sin x) = -\frac{2}{\pi} \sin x \] ### Step 5: Combine results Putting it all together: \[ f(x) = \frac{1}{\pi} \cos x - \frac{2}{\pi^2} \sin x \] ### Step 6: Find maximum value To find the maximum value of \( f(x) \), we express it in the form \( A \cos x + B \sin x \): \[ f(x) = \frac{1}{\pi} \cos x - \frac{2}{\pi^2} \sin x \] where \( A = \frac{1}{\pi} \) and \( B = -\frac{2}{\pi^2} \). The maximum value of \( A \cos x + B \sin x \) is given by: \[ \sqrt{A^2 + B^2} \] Calculating: \[ A^2 = \left(\frac{1}{\pi}\right)^2 = \frac{1}{\pi^2} \] \[ B^2 = \left(-\frac{2}{\pi^2}\right)^2 = \frac{4}{\pi^4} \] Thus, \[ A^2 + B^2 = \frac{1}{\pi^2} + \frac{4}{\pi^4} = \frac{\pi^4 + 4}{\pi^4} \] Taking the square root: \[ \sqrt{A^2 + B^2} = \frac{\sqrt{\pi^4 + 4}}{\pi^2} \] ### Final Answer The maximum value of \( f(x) \) is: \[ \frac{\sqrt{\pi^4 + 4}}{\pi^2} \]

To find the maximum value of the function \( f(x) = \int_0^1 t \sin(x + \pi t) \, dt \), we will follow these steps: ### Step 1: Evaluate the integral We start by evaluating the integral \( f(x) \): \[ f(x) = \int_0^1 t \sin(x + \pi t) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

Maximum vlaue of the function f (x) = pi^(2) int _(0)^(1)t sin (x+ pi t ) dt over all real number x:

Maximum vlaue of the function f (x) = pi^(2) int _(0)^(1)t sin (x+ pi t ) dt over all real number x:

The greater value of F(x)=int_(1)^(x) |t|dt on the interval [-1//2,1//2] , is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x tf(t)dt+2, then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  2. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  3. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  4. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  5. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  6. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  7. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  8. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  9. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  10. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  11. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  12. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  13. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  14. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  15. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  16. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  17. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  18. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  19. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  20. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |