Home
Class 12
MATHS
If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx t...

If `I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1))` is equal to

A

`(3)/(5)`

B

`(1)/(5)`

C

1

D

`(2)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the ratio \( \frac{I_3}{I_1} \), where \( I_n = \int_0^{\pi} e^x \sin^n x \, dx \). ### Step 1: Define the Integral We start with the integral: \[ I_n = \int_0^{\pi} e^x \sin^n x \, dx \] ### Step 2: Use Integration by Parts We will use integration by parts to evaluate \( I_n \). We can set: - \( u = \sin^n x \) - \( dv = e^x \, dx \) Then, we differentiate and integrate: - \( du = n \sin^{n-1} x \cos x \, dx \) - \( v = e^x \) Using integration by parts: \[ I_n = \left[ e^x \sin^n x \right]_0^{\pi} - \int_0^{\pi} e^x n \sin^{n-1} x \cos x \, dx \] ### Step 3: Evaluate the Boundary Terms Evaluating the boundary terms: \[ \left[ e^x \sin^n x \right]_0^{\pi} = e^{\pi} \sin^n(\pi) - e^0 \sin^n(0) = e^{\pi} \cdot 0 - 1 \cdot 0 = 0 \] Thus, we have: \[ I_n = -n \int_0^{\pi} e^x \sin^{n-1} x \cos x \, dx \] ### Step 4: Apply Integration by Parts Again Now, we need to integrate \( \int_0^{\pi} e^x \sin^{n-1} x \cos x \, dx \). We can apply integration by parts again: Let: - \( u = \sin^{n-1} x \) - \( dv = e^x \cos x \, dx \) Then: - \( du = (n-1) \sin^{n-2} x \cos x \, dx \) - \( v = e^x \cos x \) After performing integration by parts, we will eventually find a recursive relationship between \( I_n \), \( I_{n-1} \), and \( I_{n-2} \). ### Step 5: Establish the Recursive Relationship From the integration by parts, we derive: \[ I_n = \frac{n(n-1)}{1+n^2} I_{n-2} \] ### Step 6: Calculate \( I_3 \) and \( I_1 \) Using the recursive relationship: 1. For \( n = 3 \): \[ I_3 = \frac{3 \cdot 2}{1 + 3^2} I_1 = \frac{6}{10} I_1 = \frac{3}{5} I_1 \] ### Step 7: Find the Ratio Now we can find the ratio: \[ \frac{I_3}{I_1} = \frac{3}{5} \] ### Final Answer Thus, the value of \( \frac{I_3}{I_1} \) is: \[ \boxed{\frac{3}{5}} \]

To solve the problem, we need to evaluate the ratio \( \frac{I_3}{I_1} \), where \( I_n = \int_0^{\pi} e^x \sin^n x \, dx \). ### Step 1: Define the Integral We start with the integral: \[ I_n = \int_0^{\pi} e^x \sin^n x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" 3/5 (b) 1/5 (c) 1 (d) 2/5

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  2. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  3. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  4. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  5. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  6. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  7. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  8. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  9. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  10. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  11. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  12. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  13. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  14. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  15. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  16. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  17. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  18. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  19. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  20. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |