Home
Class 12
MATHS
If k in N and I(k)=int(-2kp)^(2kpi) |sin...

If `k in N` and `I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx`, where [.] denotes the greatest integer function, then `int_(k=1)^(100) I_(k)` equal to

A

-10100

B

-40400

C

-20200

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the integral \( I_k = \int_{-2k\pi}^{2k\pi} |\sin x| [\sin x] \, dx \), where \([ \cdot ]\) denotes the greatest integer function. We will then find the sum \( \sum_{k=1}^{100} I_k \). ### Step 1: Understanding the Integral The integral \( I_k \) can be broken down into segments based on the periodicity of the sine function. The sine function has a period of \( 2\pi \), and we can analyze the behavior of \( |\sin x| \) and \([\sin x]\) over one period. ### Step 2: Analyzing the Interval The integral can be split into intervals: - From \( -2k\pi \) to \( -k\pi \) - From \( -k\pi \) to \( 0 \) - From \( 0 \) to \( k\pi \) - From \( k\pi \) to \( 2k\pi \) Due to the symmetry of the sine function, we can analyze the integral from \( 0 \) to \( 2k\pi \) and multiply the result appropriately. ### Step 3: Evaluating \( I_k \) 1. **From \( 0 \) to \( \pi \)**: - Here, \( |\sin x| = \sin x \) and \([\sin x] = 0\) for \( x \in [0, \pi) \). - Thus, \( \int_0^{\pi} |\sin x| [\sin x] \, dx = 0 \). 2. **From \( \pi \) to \( 2\pi \)**: - Here, \( |\sin x| = -\sin x \) and \([\sin x] = -1\) for \( x \in [\pi, 2\pi) \). - Thus, \( \int_{\pi}^{2\pi} |\sin x| [\sin x] \, dx = \int_{\pi}^{2\pi} -\sin x \cdot (-1) \, dx = \int_{\pi}^{2\pi} \sin x \, dx \). - This evaluates to \( [-\cos x]_{\pi}^{2\pi} = -\cos(2\pi) + \cos(\pi) = -1 + 1 = 0 \). 3. **Combining the Results**: - Since the contributions from \( [0, \pi] \) and \( [\pi, 2\pi] \) are both zero, we conclude that: \[ I_k = 0 \quad \text{for all } k. \] ### Step 4: Summing Over k Now, we need to compute: \[ \sum_{k=1}^{100} I_k = \sum_{k=1}^{100} 0 = 0. \] ### Final Answer Thus, the final answer is: \[ \boxed{0}. \]

To solve the problem, we need to compute the integral \( I_k = \int_{-2k\pi}^{2k\pi} |\sin x| [\sin x] \, dx \), where \([ \cdot ]\) denotes the greatest integer function. We will then find the sum \( \sum_{k=1}^{100} I_k \). ### Step 1: Understanding the Integral The integral \( I_k \) can be broken down into segments based on the periodicity of the sine function. The sine function has a period of \( 2\pi \), and we can analyze the behavior of \( |\sin x| \) and \([\sin x]\) over one period. ### Step 2: Analyzing the Interval The integral can be split into intervals: - From \( -2k\pi \) to \( -k\pi \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

If int_(0)^(18pi)[sinx+cosx]dx=-kpi and [.] denotes the greatest integar function, then k is _____.

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  2. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  3. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  4. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  5. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  6. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  7. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  8. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  9. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  10. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  11. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  12. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  13. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  14. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  15. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  16. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  17. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  18. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  19. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  20. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |