Home
Class 12
MATHS
The value of int(-1)^(1) (log(x+sqrt(1...

The value of
`int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx`,

A

0

B

`2underset(0)overset(1)int (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2)))){f(x) -f(-x)}dx`

C

2f(x)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ I = \int_{-1}^{1} \frac{\log(x + \sqrt{1 + x^2})}{x + \log(x + \sqrt{1 + x^2})} f(x) \, dx - \int_{-1}^{1} \frac{\log(x + \sqrt{1 + x^2})}{x + \log(x + \sqrt{1 + x^2})} f(-x) \, dx \] ### Step 1: Define the function \( g(x) \) Let \[ g(x) = \frac{\log(x + \sqrt{1 + x^2})}{x + \log(x + \sqrt{1 + x^2})} \] ### Step 2: Rewrite the integrals We can rewrite the expression \( I \) as: \[ I = \int_{-1}^{1} g(x) f(x) \, dx - \int_{-1}^{1} g(x) f(-x) \, dx \] ### Step 3: Combine the integrals Combine the two integrals: \[ I = \int_{-1}^{1} g(x) (f(x) - f(-x)) \, dx \] ### Step 4: Analyze \( f(x) - f(-x) \) Define \[ h(x) = f(x) - f(-x) \] ### Step 5: Check if \( h(x) \) is odd To check if \( h(x) \) is odd, we compute \( h(-x) \): \[ h(-x) = f(-x) - f(x) = - (f(x) - f(-x)) = -h(x) \] Thus, \( h(x) \) is an odd function. ### Step 6: Check if \( g(x) \) is even or odd Now, we need to check if \( g(x) \) is even or odd. We compute \( g(-x) \): \[ g(-x) = \frac{\log(-x + \sqrt{1 + (-x)^2})}{-x + \log(-x + \sqrt{1 + (-x)^2})} \] Notice that: \[ \sqrt{1 + (-x)^2} = \sqrt{1 + x^2} \] Thus, \[ g(-x) = \frac{\log(-x + \sqrt{1 + x^2})}{-x + \log(-x + \sqrt{1 + x^2})} \] ### Step 7: Simplify \( g(x) - g(-x) \) We find that: \[ g(-x) = -g(x) \] This shows that \( g(x) \) is an odd function. ### Step 8: Combine the properties of \( g(x) \) and \( h(x) \) Since \( g(x) \) is odd and \( h(x) \) is odd, the product \( g(x) h(x) \) is even. ### Step 9: Evaluate the integral Now we can evaluate the integral: \[ I = \int_{-1}^{1} g(x) h(x) \, dx \] Since \( g(x) h(x) \) is an odd function, the integral over a symmetric interval around zero will be zero: \[ I = 0 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{0} \]

To solve the given problem, we need to evaluate the expression: \[ I = \int_{-1}^{1} \frac{\log(x + \sqrt{1 + x^2})}{x + \log(x + \sqrt{1 + x^2})} f(x) \, dx - \int_{-1}^{1} \frac{\log(x + \sqrt{1 + x^2})}{x + \log(x + \sqrt{1 + x^2})} f(-x) \, dx \] ### Step 1: Define the function \( g(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

int_(1)^(2) (dx)/(x(1+log x)^(2))

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

int_(0)^(1)x log (1+2 x)dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |