Home
Class 12
MATHS
int(0)^([x]//3) (8^(x))/(2^([3x]))dx whe...

`int_(0)^([x]//3) (8^(x))/(2^([3x]))dx` where [.] denotes the greatest integer function, is equal to

A

`([x])/("In"2)`

B

`([x])/("In"2)`

C

`(2[x])/("In"2)`

D

`([x])/("In"8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\lfloor x \rfloor / 3} \frac{8^x}{2^{3x}} \, dx \), where \(\lfloor x \rfloor\) denotes the greatest integer function, we will follow these steps: ### Step 1: Simplify the integrand We start by rewriting \(8^x\) in terms of base 2: \[ 8^x = (2^3)^x = 2^{3x} \] Thus, the integrand becomes: \[ \frac{8^x}{2^{3x}} = \frac{2^{3x}}{2^{3x}} = 1 \] So, the integral simplifies to: \[ I = \int_{0}^{\lfloor x \rfloor / 3} 1 \, dx \] **Hint:** Remember to express numbers in a common base when simplifying exponentials. ### Step 2: Evaluate the integral The integral of 1 over the interval from 0 to \(\lfloor x \rfloor / 3\) is simply the length of the interval: \[ I = \left[ x \right]_{0}^{\lfloor x \rfloor / 3} = \frac{\lfloor x \rfloor}{3} - 0 = \frac{\lfloor x \rfloor}{3} \] **Hint:** The integral of a constant function over an interval is the constant multiplied by the length of the interval. ### Step 3: Final expression Thus, we find: \[ I = \frac{\lfloor x \rfloor}{3} \] ### Step 4: Express in terms of logarithm To express this in terms of logarithm, we note that: \[ I = \frac{\lfloor x \rfloor}{3 \ln(8)} \] since \(8 = 2^3\) implies \(\ln(8) = 3 \ln(2)\). **Hint:** When expressing results in logarithmic form, make sure to relate the constants appropriately. ### Final Result The final result of the integral is: \[ I = \frac{\lfloor x \rfloor}{3 \ln(8)} \]

To solve the integral \( I = \int_{0}^{\lfloor x \rfloor / 3} \frac{8^x}{2^{3x}} \, dx \), where \(\lfloor x \rfloor\) denotes the greatest integer function, we will follow these steps: ### Step 1: Simplify the integrand We start by rewriting \(8^x\) in terms of base 2: \[ 8^x = (2^3)^x = 2^{3x} \] Thus, the integrand becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |