Home
Class 12
MATHS
Let f(x)=In[cos|x|+(1)/(2)] where [.] de...

Let f(x)=In`[cos|x|+(1)/(2)]` where [.] denotes the greatest integer function, then `int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx` is equal to, where `x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]`

A

1

B

2

C

-1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the function \( f(x) = \ln\left[\cos|x| + \frac{1}{2}\right] \) and evaluate the integral \[ \int_{x_1}^{x_2} \lim_{n \to \infty} \frac{(f(x))^n}{x^2 + \tan^2 x} \, dx \] where \( x_1, x_2 \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \). ### Step 1: Analyze \( f(x) \) First, we need to evaluate \( f(x) \): \[ f(x) = \ln\left[\cos|x| + \frac{1}{2}\right] \] For \( x \) in the interval \( \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \), \( |x| = x \). Thus, we can simplify \( f(x) \): - At \( x = 0 \), \( f(0) = \ln\left[\cos(0) + \frac{1}{2}\right] = \ln\left[1 + \frac{1}{2}\right] = \ln\left(\frac{3}{2}\right) \). - At \( x = \pm \frac{\pi}{6} \), \( f\left(\pm \frac{\pi}{6}\right) = \ln\left[\cos\left(\frac{\pi}{6}\right) + \frac{1}{2}\right] = \ln\left[\frac{\sqrt{3}}{2} + \frac{1}{2}\right] = \ln\left[\frac{\sqrt{3} + 1}{2}\right] \). Now, we need to find the range of \( \cos|x| \) in this interval. - The maximum value of \( \cos|x| \) is \( 1 \) (at \( x = 0 \)). - The minimum value of \( \cos|x| \) is \( \frac{\sqrt{3}}{2} \) (at \( x = \pm \frac{\pi}{6} \)). Thus, we have: \[ \frac{\sqrt{3}}{2} + \frac{1}{2} \leq \cos|x| + \frac{1}{2} \leq 1 + \frac{1}{2} \] Calculating these values: - \( \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \) (which is greater than \( 1 \)). - \( 1 + \frac{1}{2} = \frac{3}{2} \). ### Step 2: Greatest Integer Function Now, we apply the greatest integer function: \[ \lfloor \cos|x| + \frac{1}{2} \rfloor \] Since \( \frac{\sqrt{3} + 1}{2} \) is approximately \( 1.366 \) and \( \frac{3}{2} = 1.5 \), we find: \[ \lfloor \cos|x| + \frac{1}{2} \rfloor = 1 \] Thus, \[ f(x) = \ln(1) = 0 \] ### Step 3: Evaluate the Limit and Integral Now substituting \( f(x) \) into the integral: \[ \lim_{n \to \infty} \frac{(f(x))^n}{x^2 + \tan^2 x} = \lim_{n \to \infty} \frac{0^n}{x^2 + \tan^2 x} = 0 \] for all \( x \) in the interval \( \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \). ### Step 4: Final Integral Evaluation Thus, the integral simplifies to: \[ \int_{x_1}^{x_2} 0 \, dx = 0 \] ### Conclusion The value of the integral is: \[ \boxed{0} \]

To solve the given problem step by step, we will analyze the function \( f(x) = \ln\left[\cos|x| + \frac{1}{2}\right] \) and evaluate the integral \[ \int_{x_1}^{x_2} \lim_{n \to \infty} \frac{(f(x))^n}{x^2 + \tan^2 x} \, dx \] where \( x_1, x_2 \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |