Home
Class 12
MATHS
lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+...

`lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x))` is equal to

A

1

B

-1

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\int_{0}^{x} x e^{t^2} dt}{1 + x - e^x} \] we can apply L'Hôpital's rule since both the numerator and denominator approach 0 as \(x\) approaches 0. ### Step 1: Verify the form of the limit As \(x \to 0\): - The numerator: \(\int_{0}^{x} x e^{t^2} dt \to 0\) - The denominator: \(1 + x - e^x \to 1 + 0 - 1 = 0\) Thus, we have a \(\frac{0}{0}\) form, which allows us to apply L'Hôpital's rule. ### Step 2: Differentiate the numerator and denominator Using L'Hôpital's rule, we differentiate the numerator and the denominator with respect to \(x\). **Numerator:** Using the Leibniz rule for differentiation under the integral sign: \[ \frac{d}{dx} \left( \int_{0}^{x} x e^{t^2} dt \right) = \int_{0}^{x} e^{t^2} dt + x \cdot e^{x^2} \] **Denominator:** The derivative of the denominator \(1 + x - e^x\) is: \[ \frac{d}{dx}(1 + x - e^x) = 1 - e^x \] ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^2} dt + x e^{x^2}}{1 - e^x} \] ### Step 4: Evaluate the limit As \(x \to 0\): - The numerator: \(\int_{0}^{0} e^{t^2} dt + 0 \cdot e^{0^2} = 0 + 0 = 0\) - The denominator: \(1 - e^0 = 1 - 1 = 0\) We still have a \(\frac{0}{0}\) form, so we apply L'Hôpital's rule again. ### Step 5: Differentiate again **Numerator:** Differentiating again: \[ \frac{d}{dx} \left( \int_{0}^{x} e^{t^2} dt + x e^{x^2} \right) = e^{x^2} + e^{x^2} + 2x^2 e^{x^2} = 2e^{x^2} + 2x^2 e^{x^2} \] **Denominator:** Differentiating again: \[ \frac{d}{dx}(1 - e^x) = -e^x \] ### Step 6: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{2e^{x^2} + 2x^2 e^{x^2}}{-e^x} \] ### Step 7: Evaluate the limit As \(x \to 0\): - The numerator: \(2e^{0} + 2 \cdot 0^2 \cdot e^{0} = 2 + 0 = 2\) - The denominator: \(-e^{0} = -1\) Thus, the limit becomes: \[ \frac{2}{-1} = -2 \] ### Final Answer The limit is \[ \boxed{-2} \]

To solve the limit \[ \lim_{x \to 0} \frac{\int_{0}^{x} x e^{t^2} dt}{1 + x - e^x} \] we can apply L'Hôpital's rule since both the numerator and denominator approach 0 as \(x\) approaches 0. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

lim_(x to 0)(int_(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

lim_(xrarr oo) (int_(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim(x->0)(1/(x^5)int_0^xe^(-t^2)dt-1/(x^4)+1/(3x^2)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

underset(xto0)("lim")(int_(0)^(x)t tan (5t)dt)/x^3 is equal to :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |