Home
Class 12
MATHS
If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(...

If `int_(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5`, then f(8)=

A

`(1)/("In"2)`

B

`(1)/(2"In"2)`

C

`(1)/(3"In"2)`

D

`(1)/(4"In"2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(8) \) given that: \[ \int_{2x^2}^{x^3} \ln x \, f(t) \, dt = x^2 - 2x + 5 \] ### Step 1: Differentiate both sides with respect to \( x \) Using the Leibniz rule for differentiation under the integral sign, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{2x^2}^{x^3} \ln x \, f(t) \, dt \right) = \ln x \cdot f(x^3) \cdot \frac{d}{dx}(x^3) - \ln x \cdot f(2x^2) \cdot \frac{d}{dx}(2x^2) \] Calculating the derivatives: \[ = \ln x \cdot f(x^3) \cdot 3x^2 - \ln x \cdot f(2x^2) \cdot 4x \] Now differentiate the right-hand side: \[ \frac{d}{dx}(x^2 - 2x + 5) = 2x - 2 \] ### Step 2: Set the derivatives equal Now we have: \[ \ln x \cdot f(x^3) \cdot 3x^2 - \ln x \cdot f(2x^2) \cdot 4x = 2x - 2 \] ### Step 3: Substitute \( x = 2 \) We want to find \( f(8) \), and since \( 2^3 = 8 \), we can substitute \( x = 2 \): \[ \ln(2) \cdot f(8) \cdot 3(2^2) - \ln(2) \cdot f(8) \cdot 4(2) = 2(2) - 2 \] Calculating the left side: \[ \ln(2) \cdot f(8) \cdot 12 - \ln(2) \cdot f(8) \cdot 8 = 4 - 2 \] This simplifies to: \[ \ln(2) \cdot f(8) \cdot 4 = 2 \] ### Step 4: Solve for \( f(8) \) Now, we can solve for \( f(8) \): \[ f(8) = \frac{2}{4 \ln(2)} = \frac{1}{2 \ln(2)} \] ### Final Answer Thus, the value of \( f(8) \) is: \[ f(8) = \frac{1}{2 \ln(2)} \]

To solve the problem, we need to find the value of \( f(8) \) given that: \[ \int_{2x^2}^{x^3} \ln x \, f(t) \, dt = x^2 - 2x + 5 \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

If int_(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

Let y = f(x) be a differentiable curve satisfying int_(2)^(x)f(t)dt=(x^(2))/(2)+int_(x)^(2)t^(2)f(t)dt , then int_(-pi//4)^(pi//4)(f(x)+x^(9)-x^(3)+x+1)/(cos^(2)x)dx equals :

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |