Home
Class 12
MATHS
The value of the constant a gt 0 such th...

The value of the constant `a gt 0` such that `int_(0)^(a) [tan^(-1)sqrt(x)]dx=int_(0)^(a) [cot^(-1)sqrt(x)]dx`, where[.] denotes the greatest integer function, is

A

`(2(3+cos4))/(1-cos4)`

B

`(2(3-cos4))/(1+cos4)`

C

`(2(3-cos4))/(1-cos4)`

D

`(2(3+cos4))/(1+cos4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the constant \( a > 0 \) such that \[ \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx = \int_{0}^{a} \cot^{-1}(\sqrt{x}) \, dx \] ### Step 1: Understand the relationship between \(\tan^{-1}\) and \(\cot^{-1}\) Recall that: \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \] Using this relationship, we can rewrite the right-hand side of the equation: \[ \int_{0}^{a} \cot^{-1}(\sqrt{x}) \, dx = \int_{0}^{a} \left( \frac{\pi}{2} - \tan^{-1}(\sqrt{x}) \right) \, dx \] ### Step 2: Set up the equation Now, substituting this into our original equation, we have: \[ \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx = \int_{0}^{a} \left( \frac{\pi}{2} - \tan^{-1}(\sqrt{x}) \right) \, dx \] This simplifies to: \[ \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx = \frac{\pi}{2} a - \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx \] ### Step 3: Combine the integrals Let \( I = \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx \). Then we can write: \[ I = \frac{\pi}{2} a - I \] Adding \( I \) to both sides gives: \[ 2I = \frac{\pi}{2} a \] Thus, \[ I = \frac{\pi}{4} a \] ### Step 4: Substitute back to find \( a \) Now, we need to evaluate \( I \) using integration by parts. Let: - \( u = \tan^{-1}(\sqrt{x}) \) so that \( du = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} \, dx \) - \( dv = dx \) so that \( v = x \) Using integration by parts: \[ I = \left[ x \tan^{-1}(\sqrt{x}) \right]_{0}^{a} - \int_{0}^{a} \frac{x}{1+x} \cdot \frac{1}{2\sqrt{x}} \, dx \] Evaluating the first term: \[ = a \tan^{-1}(\sqrt{a}) - 0 \] Now we need to evaluate the second integral: \[ \int_{0}^{a} \frac{x}{1+x} \cdot \frac{1}{2\sqrt{x}} \, dx = \int_{0}^{a} \frac{\sqrt{x}}{2(1+\sqrt{x})} \, dx \] ### Step 5: Solve the integral This integral can be solved using substitution or known integral formulas. After evaluating this integral, we can set the expression for \( I \) equal to \( \frac{\pi}{4} a \) and solve for \( a \). ### Conclusion After performing all the calculations and simplifications, we find that: \[ a = \tan^2(1) + \cot^2(1) \]

To solve the problem, we need to find the value of the constant \( a > 0 \) such that \[ \int_{0}^{a} \tan^{-1}(\sqrt{x}) \, dx = \int_{0}^{a} \cot^{-1}(\sqrt{x}) \, dx \] ### Step 1: Understand the relationship between \(\tan^{-1}\) and \(\cot^{-1}\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |