Home
Class 12
MATHS
If f(x) is a continuous function in [0,p...

If f(x) is a continuous function in `[0,pi]` such that f(0)=f(x)=0, then the value of
`int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx` is equal to

A

`pi`

B

`2pi`

C

`3pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \left( f(2x) - f''(2x) \right) \sin x \cos x \, dx, \] given that \( f(0) = f(x) = 0 \) for \( x \in [0, \pi] \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ I = \int_{0}^{\frac{\pi}{2}} \left( f(2x) - f''(2x) \right) \sin x \cos x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left( f(2x) - f''(2x) \right) \sin(2x) \, dx. \] ### Step 2: Change of Variables Let \( t = 2x \). Then, \( dt = 2dx \) or \( dx = \frac{dt}{2} \). The limits change as follows: when \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{2} \), \( t = \pi \). Thus, we have: \[ I = \frac{1}{2} \int_{0}^{\pi} \left( f(t) - f''(t) \right) \sin(t) \frac{dt}{2} = \frac{1}{4} \int_{0}^{\pi} \left( f(t) - f''(t) \right) \sin(t) \, dt. \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \frac{1}{4} \left( \int_{0}^{\pi} f(t) \sin(t) \, dt - \int_{0}^{\pi} f''(t) \sin(t) \, dt \right). \] ### Step 4: Integrate by Parts For the second integral, we will use integration by parts. Let \( u = \sin(t) \) and \( dv = f''(t) dt \). Then, \( du = \cos(t) dt \) and \( v = f'(t) \): \[ \int f''(t) \sin(t) \, dt = f'(t) \sin(t) \bigg|_{0}^{\pi} - \int f'(t) \cos(t) \, dt. \] Evaluating the boundary terms, we have: - At \( t = 0 \): \( f'(0) \sin(0) = 0 \). - At \( t = \pi \): \( f'(\pi) \sin(\pi) = 0 \). Thus, the boundary terms contribute \( 0 \), and we have: \[ \int_{0}^{\pi} f''(t) \sin(t) \, dt = - \int_{0}^{\pi} f'(t) \cos(t) \, dt. \] ### Step 5: Apply Integration by Parts Again Now we apply integration by parts again to \( \int f'(t) \cos(t) \, dt \): Let \( u = \cos(t) \) and \( dv = f'(t) dt \). Then, \( du = -\sin(t) dt \) and \( v = f(t) \): \[ \int f'(t) \cos(t) \, dt = f(t) \cos(t) \bigg|_{0}^{\pi} + \int f(t) \sin(t) \, dt. \] Again, evaluating the boundary terms: - At \( t = 0 \): \( f(0) \cos(0) = f(0) = 0 \). - At \( t = \pi \): \( f(\pi) \cos(\pi) = -f(\pi) \). Thus, we have: \[ \int_{0}^{\pi} f'(t) \cos(t) \, dt = -f(\pi) + \int_{0}^{\pi} f(t) \sin(t) \, dt. \] ### Step 6: Combine Everything Substituting back, we find: \[ \int_{0}^{\pi} f''(t) \sin(t) \, dt = -\left(-f(\pi) + \int_{0}^{\pi} f(t) \sin(t) \, dt\right) = f(\pi) - \int_{0}^{\pi} f(t) \sin(t) \, dt. \] Now substituting this back into our expression for \( I \): \[ I = \frac{1}{4} \left( \int_{0}^{\pi} f(t) \sin(t) \, dt - (f(\pi) - \int_{0}^{\pi} f(t) \sin(t) \, dt) \right). \] This simplifies to: \[ I = \frac{1}{4} \left( 2 \int_{0}^{\pi} f(t) \sin(t) \, dt - f(\pi) \right). \] ### Step 7: Evaluate the Integral Given that \( f(0) = f(\pi) = 0 \), the integral \( \int_{0}^{\pi} f(t) \sin(t) \, dt \) will also yield \( 0 \) if \( f(t) \) is continuous and satisfies the boundary conditions. Therefore, we conclude: \[ I = \frac{1}{4} \left( 0 - 0 \right) = 0. \] ### Final Answer Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \left( f(2x) - f''(2x) \right) \sin x \cos x \, dx, \] given that \( f(0) = f(x) = 0 \) for \( x \in [0, \pi] \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

int_(0)^(pi//2) ( f ( co x )) /( f (sinx ) + f(co sx) ) dx is equal to

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If f is continuous on [0,1] such that f(x)+f(x+1/2)=1 and int_0^1f(x)dx=k , then value of 2k is 0 (2) 1 (3) 2 (4) 3

If f(x) is continuous function in [0,2pi] and f(0)=f(2 pi ), then prove that there exists a point c in (0,pi) such that f(x)=f(x+pi).

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f(x+1) has

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |