Home
Class 12
MATHS
If f(x) is an integrable function on [(p...

If f(x) is an integrable function on `[(pi)/(6),(pi)/(3)]` and
`I_(1)=int_(pi//6)^(pi//3) sec^(2)thetaf(2 sin 2theta)d theta" and "I_(2)=int_(pi//6)^(pi//3) "cosec"^(2)theta f(2 sin2theta)d theta`, then

A

`I_(1)=2I_(2)`

B

`I_(1)=3I_(2)`

C

`2I_(1)=I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. Given: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2 \theta \, f(2 \sin 2\theta) \, d\theta \] \[ I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 \theta \, f(2 \sin 2\theta) \, d\theta \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals which states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, we will let \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \). ### Step 2: Substitute \( \theta \) in \( I_1 \) Using the property, we can substitute \( \theta \) with \( \frac{\pi}{2} - \theta \) in \( I_1 \): \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2\left(\frac{\pi}{2} - \theta\right) f\left(2 \sin\left(2\left(\frac{\pi}{2} - \theta\right)\right)\right) d\theta \] ### Step 3: Simplify the integrand Using trigonometric identities: - \( \sec^2\left(\frac{\pi}{2} - \theta\right) = \csc^2 \theta \) - \( \sin(2(\frac{\pi}{2} - \theta)) = \sin(\pi - 2\theta) = \sin(2\theta) \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 \theta \, f(2 \sin 2\theta) \, d\theta \] ### Step 4: Compare \( I_1 \) and \( I_2 \) Now we see that: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 \theta \, f(2 \sin 2\theta) \, d\theta = I_2 \] ### Conclusion Thus, we have established that: \[ I_1 = I_2 \] ### Final Result The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = I_2 \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. Given: \[ I_1 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2 \theta \, f(2 \sin 2\theta) \, d\theta \] \[ I_2 = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2 \theta \, f(2 \sin 2\theta) \, d\theta ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

int_0^(pi//2)(theta/sintheta)^2d theta=

Let f beintegrable over [0,a] for any real value of a . If I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta and I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta , then

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

Find the value of the following: int_(pi/4)^(pi/2) cosec^2thetacostheta d theta

5. int_0^(pi/4)sec^2theta d theta

9. int_0^(pi/2)sec^4theta d theta

6) int_0^(pi/4)sec^4theta d theta

6) int_0^(pi/4)sec^4theta d theta

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |