Home
Class 12
MATHS
The total number for distinct x epsilon[...

The total number for distinct `x epsilon[0,1]` for which `int_(0)^(x)(t^(2))/(1+t^(4))dt=2x-1` is __________.

A

1

B

2

C

3

D

infinitely many

Text Solution

Verified by Experts

The correct Answer is:
A

Let `f(x)=underset(0)overset(x)int (t^(2))/(1+t^(4))dt=2x-1`,Clearly, f(x) is
`f'(x)=(x^(2))/(1+x^(4))-2=(1)/((1)/(x^(2))+x^(2))-2=(1)/((x-(1)/(x))^(2)+2)-2lt0`
So,f(x) is a strictly decreasing function on [0,1].
Also, `f(0)=1 gt0`
and, `f(1)=underset(0)overset(1)int (t^(2))/(1+t^(4))dt-1 lt 0[:'underset(0)overset(1)int (t^(2))/(1+t^(4))dt le underset(0)overset(1)int (1)/(2)dt=(1)/(2)]`
So,f(x)=0 has exactly one solution in [0,1].
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Find the number of values of x satisfying int_(0)^(x)t^(2)sin (x-t)dt=x^(2) in [0, 100] .

The number of critical points of f (x)= (int _(0) ^(x) (cos ^(2) t- ""^(3) sqrtt)dt)+3/4 x ^(4//3)-(x+1)/(2) in (0, 6pi] is:

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

Let f(x)=int_(0)^(x)"cos" ((t^(2)+2t+1)/(5))dt,o>x>2, then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If lamda=int(0)^(1)(e^(t))/(1+t), then find the value of int(0)^(1)e^(...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1, then int(0)^(10)f(10-x)d...

    Text Solution

    |

  11. If alpha,beta(beta>alpha), are the roots of g(x)-a x^2+b x+c=0 and f(x...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R....

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  20. For x in R, x != 0, if y(x) differential function such that x int1^x ...

    Text Solution

    |