Home
Class 12
MATHS
The value of integral sum (k=1)^(n) int...

The value of integral ` sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx ` is

A

`underset (0)overset(1) intf(x)dx`

B

`underset (0)overset(2) intf(x)dx`

C

`underset (0)overset(2) intf(x)dx`

D

`n underset (0)overset(2) intf(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \sum_{k=1}^{n} \int_{0}^{1} f(k - 1 + x) \, dx \), we will follow a systematic approach. ### Step 1: Change of Variables Let’s perform a change of variables in the integral. We set: \[ t = k - 1 + x \] Then, differentiating both sides gives: \[ dx = dt \] Now, we need to change the limits of integration. When \( x = 0 \): \[ t = k - 1 + 0 = k - 1 \] When \( x = 1 \): \[ t = k - 1 + 1 = k \] Thus, the integral becomes: \[ \int_{0}^{1} f(k - 1 + x) \, dx = \int_{k - 1}^{k} f(t) \, dt \] ### Step 2: Substitute Back into the Summation Now we substitute this back into the summation: \[ \sum_{k=1}^{n} \int_{0}^{1} f(k - 1 + x) \, dx = \sum_{k=1}^{n} \int_{k - 1}^{k} f(t) \, dt \] ### Step 3: Combine the Integrals Next, we can combine the integrals: \[ \sum_{k=1}^{n} \int_{k - 1}^{k} f(t) \, dt = \int_{0}^{n} f(t) \, dt \] This is because the intervals \([k-1, k]\) for \(k = 1\) to \(n\) cover the entire interval \([0, n]\). ### Step 4: Final Result Thus, we conclude: \[ \sum_{k=1}^{n} \int_{0}^{1} f(k - 1 + x) \, dx = \int_{0}^{n} f(t) \, dt \] ### Conclusion The value of the integral \( \sum_{k=1}^{n} \int_{0}^{1} f(k - 1 + x) \, dx \) is: \[ \int_{0}^{n} f(t) \, dt \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

The value of integral int_(0)^(1)sqrt((1-x)/(1+x)) dx is

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  2. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  3. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  4. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  5. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  6. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  7. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  8. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  9. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  10. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  11. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  12. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  13. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  14. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  15. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  16. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  17. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  18. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  19. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  20. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |