Home
Class 12
MATHS
The value of int(a)^(a+(pi//2))(sin^(4)x...

The value of `int_(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx` is

A

`(3pi)/(8)`

B

`a((pi)/(2))^(2)`

C

`(3pia^(2))/(8)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{a}^{a + \frac{\pi}{2}} \left( \sin^4 x + \cos^4 x \right) dx \), we will follow these steps: ### Step 1: Simplify the integrand We can use the identity \( \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \). Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x \] ### Step 2: Rewrite the integral Substituting this back into the integral, we get: \[ I = \int_{a}^{a + \frac{\pi}{2}} \left( 1 - 2\sin^2 x \cos^2 x \right) dx \] ### Step 3: Use the double angle identity Recall that \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \). Therefore, we can rewrite the integral as: \[ I = \int_{a}^{a + \frac{\pi}{2}} \left( 1 - \frac{1}{2} \sin^2(2x) \right) dx \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ I = \int_{a}^{a + \frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{a}^{a + \frac{\pi}{2}} \sin^2(2x) \, dx \] ### Step 5: Evaluate the first integral The first integral is straightforward: \[ \int_{a}^{a + \frac{\pi}{2}} 1 \, dx = \left[ x \right]_{a}^{a + \frac{\pi}{2}} = \left( a + \frac{\pi}{2} \right) - a = \frac{\pi}{2} \] ### Step 6: Evaluate the second integral For the second integral, we use the identity \( \sin^2(2x) = \frac{1 - \cos(4x)}{2} \): \[ \int_{a}^{a + \frac{\pi}{2}} \sin^2(2x) \, dx = \int_{a}^{a + \frac{\pi}{2}} \frac{1 - \cos(4x)}{2} \, dx = \frac{1}{2} \int_{a}^{a + \frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{a}^{a + \frac{\pi}{2}} \cos(4x) \, dx \] The first part evaluates to: \[ \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] The second part evaluates as: \[ \int \cos(4x) \, dx = \frac{1}{4} \sin(4x) \quad \text{so} \quad \left[ \frac{1}{4} \sin(4x) \right]_{a}^{a + \frac{\pi}{2}} = \frac{1}{4} \left( \sin(2\pi) - \sin(4a) \right) = -\frac{1}{4} \sin(4a) \] Thus, combining these results: \[ \int_{a}^{a + \frac{\pi}{2}} \sin^2(2x) \, dx = \frac{\pi}{4} + \frac{1}{4} \sin(4a) \] ### Step 7: Substitute back into the integral Now substituting back into \( I \): \[ I = \frac{\pi}{2} - \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{4} \sin(4a) \right) = \frac{\pi}{2} - \frac{\pi}{8} - \frac{1}{8} \sin(4a) \] This simplifies to: \[ I = \frac{4\pi}{8} - \frac{\pi}{8} - \frac{1}{8} \sin(4a) = \frac{3\pi}{8} - \frac{1}{8} \sin(4a) \] ### Final Result Thus, the value of the integral is: \[ I = \frac{3\pi}{8} - \frac{1}{8} \sin(4a) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi//2) sin ^(4) x dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

Evaluate int _(0)^(pi//2) sin^(4) x. cos^(6) x dx .

int_(0)^(pi//4) sin ^(2) x dx

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  2. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  3. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  4. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  5. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  6. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  7. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  8. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  9. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  10. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  11. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  12. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  13. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  15. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  16. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  17. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  18. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  19. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  20. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |