Home
Class 12
MATHS
The vaue of int(-1)^(2) (|x|)/(x)dx is...

The vaue of `int_(-1)^(2) (|x|)/(x)dx` is

A

0

B

1

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \(\int_{-1}^{2} \frac{|x|}{x} \, dx\), we can follow these steps: ### Step 1: Analyze the function \(\frac{|x|}{x}\) The function \(\frac{|x|}{x}\) behaves differently depending on the sign of \(x\): - For \(x < 0\), \(|x| = -x\), so \(\frac{|x|}{x} = \frac{-x}{x} = -1\). - For \(x > 0\), \(|x| = x\), so \(\frac{|x|}{x} = \frac{x}{x} = 1\). ### Step 2: Split the integral at the point where the function changes Since the function changes at \(x = 0\), we can split the integral into two parts: \[ \int_{-1}^{2} \frac{|x|}{x} \, dx = \int_{-1}^{0} \frac{|x|}{x} \, dx + \int_{0}^{2} \frac{|x|}{x} \, dx \] ### Step 3: Evaluate each part of the integral 1. **For the interval \([-1, 0]\)**: \[ \int_{-1}^{0} \frac{|x|}{x} \, dx = \int_{-1}^{0} -1 \, dx = -\int_{-1}^{0} 1 \, dx \] Evaluating this integral: \[ -\left[x\right]_{-1}^{0} = -\left(0 - (-1)\right) = -1 \] 2. **For the interval \([0, 2]\)**: \[ \int_{0}^{2} \frac{|x|}{x} \, dx = \int_{0}^{2} 1 \, dx = \left[x\right]_{0}^{2} = 2 - 0 = 2 \] ### Step 4: Combine the results Now, we can combine the results from both intervals: \[ \int_{-1}^{2} \frac{|x|}{x} \, dx = -1 + 2 = 1 \] ### Final Answer Thus, the value of the integral \(\int_{-1}^{2} \frac{|x|}{x} \, dx\) is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)(x+2)/(x+1)dx is

int_(1)^(2) (1)/(x(1+x))dx

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

int_(1)^(2) (x^3+1) dx

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int_(-1)^(2) (x) /((x^(2)+1)^(2))dx

int_(-1)^(1)e^(2x)dx

int_(1)^(5) (x^(2) -2x) dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  2. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  3. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  4. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  5. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  6. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  7. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  8. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  9. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  10. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  11. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  12. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  13. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  14. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  15. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  16. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  17. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  18. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  19. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  20. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |