Home
Class 12
MATHS
The value of int(0)^(3) xsqrt(1+x)dx, i...

The value of `int_(0)^(3) xsqrt(1+x)dx`, is

A

`(9)/(2)`

B

`(27)/(4)`

C

`(126)/(15)`

D

`(116)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{3} x \sqrt{1+x} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = 1 + x \). Then, differentiating both sides gives us: \[ dx = dt \] Also, we need to change the limits of integration. When \( x = 0 \), \( t = 1 + 0 = 1 \). When \( x = 3 \), \( t = 1 + 3 = 4 \). ### Step 2: Express \( x \) in terms of \( t \) From our substitution, we have: \[ x = t - 1 \] Now we can rewrite the integral in terms of \( t \): \[ I = \int_{1}^{4} (t - 1) \sqrt{t} \, dt \] ### Step 3: Expand the integrand Now we can expand the integrand: \[ I = \int_{1}^{4} (t \sqrt{t} - \sqrt{t}) \, dt = \int_{1}^{4} (t^{3/2} - t^{1/2}) \, dt \] ### Step 4: Integrate term by term Now we can integrate each term separately: \[ I = \int_{1}^{4} t^{3/2} \, dt - \int_{1}^{4} t^{1/2} \, dt \] Calculating the first integral: \[ \int t^{3/2} \, dt = \frac{t^{5/2}}{5/2} = \frac{2}{5} t^{5/2} \] Calculating the second integral: \[ \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2} \] ### Step 5: Evaluate the integrals from 1 to 4 Now we evaluate both integrals from 1 to 4: \[ I = \left[ \frac{2}{5} t^{5/2} \right]_{1}^{4} - \left[ \frac{2}{3} t^{3/2} \right]_{1}^{4} \] Calculating the first part: \[ \frac{2}{5} \left( 4^{5/2} - 1^{5/2} \right) = \frac{2}{5} \left( 32 - 1 \right) = \frac{2}{5} \cdot 31 = \frac{62}{5} \] Calculating the second part: \[ \frac{2}{3} \left( 4^{3/2} - 1^{3/2} \right) = \frac{2}{3} \left( 8 - 1 \right) = \frac{2}{3} \cdot 7 = \frac{14}{3} \] ### Step 6: Combine the results Now we combine the results: \[ I = \frac{62}{5} - \frac{14}{3} \] ### Step 7: Find a common denominator The common denominator for 5 and 3 is 15: \[ I = \frac{62 \cdot 3}{15} - \frac{14 \cdot 5}{15} = \frac{186}{15} - \frac{70}{15} = \frac{116}{15} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{116}{15}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) xsqrt(2-x)dx

The value of int_(0)^(1) (1)/(2x-3)dx is

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

The value of int_(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is __________.

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  2. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  3. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  4. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  5. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  6. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  7. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  8. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  9. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  10. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  11. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  12. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  13. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  14. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  15. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  16. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  17. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  18. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  19. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  20. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |