Home
Class 12
MATHS
If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx an...

If ` I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=`

A

1

B

2

C

`1//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_0^{\infty} \frac{dx}{1 + x^4} \] \[ I_2 = \int_0^{\infty} \frac{x^2 \, dx}{1 + x^4} \] Then, we will find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) We start with the integral \( I_1 \): \[ I_1 = \int_0^{\infty} \frac{dx}{1 + x^4} \] To evaluate this integral, we use the substitution \( x = \frac{1}{t} \). Then, \( dx = -\frac{1}{t^2} dt \). The limits change as follows: when \( x = 0 \), \( t \to \infty \) and when \( x \to \infty \), \( t = 0 \). Substituting these into the integral gives: \[ I_1 = \int_{\infty}^{0} \frac{-\frac{1}{t^2}}{1 + \left(\frac{1}{t}\right)^4} dt = \int_{0}^{\infty} \frac{1/t^2}{1 + \frac{1}{t^4}} dt \] Rearranging the denominator: \[ = \int_{0}^{\infty} \frac{1/t^2}{\frac{t^4 + 1}{t^4}} dt = \int_{0}^{\infty} \frac{t^4}{t^2(t^4 + 1)} dt = \int_{0}^{\infty} \frac{t^2}{1 + t^4} dt \] Thus, we have: \[ I_1 = \int_{0}^{\infty} \frac{t^2}{1 + t^4} dt \] ### Step 2: Evaluate \( I_2 \) Now we evaluate \( I_2 \): \[ I_2 = \int_0^{\infty} \frac{x^2 \, dx}{1 + x^4} \] Notice that we have already derived that: \[ I_1 = \int_0^{\infty} \frac{x^2}{1 + x^4} dx \] Thus, we can conclude: \[ I_1 = I_2 \] ### Step 3: Find the ratio \( \frac{I_1}{I_2} \) Now, we find the ratio: \[ \frac{I_1}{I_2} = \frac{I_1}{I_1} = 1 \] ### Final Answer Thus, the final answer is: \[ \frac{I_1}{I_2} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

1. int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  2. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  3. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  4. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  5. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  6. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  7. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  8. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  9. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  10. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  11. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  12. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  13. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  14. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  15. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  16. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  17. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  18. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  19. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  20. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |