Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2) sin^(6) x dx`, is

A

`(3pi)/(4)`

B

`(5)/(32) pi`

C

`(3)/(16) pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx \), we can use the property of definite integrals and some algebraic manipulations. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx \] ### Step 2: Use the Symmetry Property of Integrals Using the property of integrals, we know that: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] For our case, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^6\left(\frac{\pi}{2} - x\right) \, dx \] Since \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx \] ### Step 3: Add the Two Integrals Now we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx + \int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(\sin^6 x + \cos^6 x\right) \, dx \] ### Step 4: Use the Identity for Sine and Cosine We can use the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \) where \( a = \sin^2 x \) and \( b = \cos^2 x \): \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x \] ### Step 5: Simplify Further Now, we can express \( \sin^4 x + \cos^4 x \) using the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Thus, \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos^2 x \] ### Step 6: Substitute Back into the Integral Now substituting back into our integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left(1 - 3\sin^2 x \cos^2 x\right) \, dx \] This can be split into two integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx - 3 \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx \] ### Step 7: Evaluate the First Integral The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] ### Step 8: Evaluate the Second Integral For the second integral, we can use the identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x \): \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx \] Using the formula \( \int \sin^2 kx \, dx = \frac{x}{2} - \frac{\sin 2kx}{4k} + C \): \[ \int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx = \frac{\pi}{4} \] Thus: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16} \] ### Step 9: Substitute Back Now substituting back: \[ 2I = \frac{\pi}{2} - 3 \cdot \frac{\pi}{16} \] Calculating this gives: \[ 2I = \frac{\pi}{2} - \frac{3\pi}{16} = \frac{8\pi}{16} - \frac{3\pi}{16} = \frac{5\pi}{16} \] Thus, \[ I = \frac{5\pi}{32} \] ### Final Answer The value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx \) is: \[ \boxed{\frac{5\pi}{32}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0)^(pi//2) sin 2n x cot x dx, where n is a positive integer, is

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

int_(0)^(pi) x sin^(2) x dx

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  2. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  4. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  5. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  6. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  7. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  8. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  9. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  10. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  11. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  12. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  13. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  14. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  15. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  16. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  17. If Im=int1^x(logx)^mdx satisfies the relation (Im)=k-l I(m-1) then

    Text Solution

    |

  18. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  19. If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 ), t...

    Text Solution

    |

  20. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |