Home
Class 12
MATHS
The value of the integral int 0^oo 1/(1+...

The value of the integral `int _0^oo 1/(1+x^4)dx` is

A

`(pi)/(2)`

B

`(pi)/(sqrt(2))`

C

`(pi)/(2sqrt(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^\infty \frac{1}{1 + x^4} \, dx \), we will use a series of substitutions and properties of definite integrals. ### Step 1: Define the integral Let \[ I = \int_0^\infty \frac{1}{1 + x^4} \, dx \] ### Step 2: Split the integral We can rewrite the integrand by adding and subtracting \( x^2 \) in the numerator: \[ I = \int_0^\infty \frac{x^2 + 1 - x^2}{1 + x^4} \, dx = \int_0^\infty \frac{x^2}{1 + x^4} \, dx + \int_0^\infty \frac{1 - x^2}{1 + x^4} \, dx \] ### Step 3: Define the second integral Let \[ I_2 = \int_0^\infty \frac{1 - x^2}{1 + x^4} \, dx \] Thus, we can express \( I \) as: \[ I = \int_0^\infty \frac{x^2}{1 + x^4} \, dx + I_2 \] ### Step 4: Analyze \( I_2 \) We can simplify \( I_2 \) by making the substitution \( x = \frac{1}{t} \). Then \( dx = -\frac{1}{t^2} dt \), and the limits change as follows: - When \( x = 0 \), \( t \to \infty \) - When \( x \to \infty \), \( t \to 0 \) Thus, \[ I_2 = \int_\infty^0 \frac{1 - \frac{1}{t^2}}{1 + \frac{1}{t^4}} \left(-\frac{1}{t^2}\right) dt = \int_0^\infty \frac{t^2 - 1}{t^4 + 1} dt \] ### Step 5: Combine integrals Now we have: \[ I_2 = -\int_0^\infty \frac{1}{t^4 + 1} dt + \int_0^\infty \frac{t^2}{t^4 + 1} dt \] Notice that: \[ I_2 = -I + I \] This implies: \[ I_2 = -I + I = 0 \] ### Step 6: Substitute back into the equation Substituting \( I_2 = 0 \) back into our expression for \( I \): \[ I = \int_0^\infty \frac{x^2}{1 + x^4} \, dx \] ### Step 7: Evaluate \( I \) Now, we can evaluate \( I \) by using the symmetry of the integrand. Notice that: \[ \int_0^\infty \frac{x^2}{1 + x^4} \, dx = \int_0^\infty \frac{1}{1 + x^4} \, dx \] Thus, we can write: \[ 2I = \int_0^\infty \frac{1 + x^2}{1 + x^4} \, dx \] ### Step 8: Final evaluation Using the substitution \( x = \tan(\theta) \), we can evaluate the integral: \[ \int_0^{\frac{\pi}{2}} \sec^2(\theta) \, d\theta = \left[ \tan(\theta) \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] Thus, \[ I = \frac{\pi}{4\sqrt{2}} \] ### Conclusion The value of the integral \( \int_0^\infty \frac{1}{1 + x^4} \, dx \) is: \[ \boxed{\frac{\pi}{2\sqrt{2}}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-2)^2|1-x^2|dx is a. 4 b. 2 c. -2 d. 0

If the value of the integral int_1^2e^(x^2)dx is alpha , then the value of int_e^(e^4)sqrt(lnx)dx is:

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  2. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  3. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  4. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  5. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  6. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  7. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  8. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  9. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  10. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  11. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  12. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  13. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  14. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  15. If Im=int1^x(logx)^mdx satisfies the relation (Im)=k-l I(m-1) then

    Text Solution

    |

  16. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  17. If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 ), t...

    Text Solution

    |

  18. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  19. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  20. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |