Home
Class 12
MATHS
The value of alpha in [0,2pi] which does...

The value of `alpha in [0,2pi]` which does not satify the equation `int_(pi//2)^(alpha) sin x dx = sin 2 alpha, ` is

A

`pi`

B

`(3pi)/(2)`

C

`(7pi)/(6)`

D

`(11pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{\frac{\pi}{2}}^{\alpha} \sin x \, dx = \sin(2\alpha) \] for \(\alpha\) in the interval \([0, 2\pi]\), we will follow these steps: ### Step 1: Evaluate the definite integral The integral of \(\sin x\) is \(-\cos x\). Therefore, we can evaluate the definite integral as follows: \[ \int_{\frac{\pi}{2}}^{\alpha} \sin x \, dx = -\cos(\alpha) + \cos\left(\frac{\pi}{2}\right) \] Since \(\cos\left(\frac{\pi}{2}\right) = 0\), we have: \[ \int_{\frac{\pi}{2}}^{\alpha} \sin x \, dx = -\cos(\alpha) \] ### Step 2: Set up the equation Now we can set up the equation: \[ -\cos(\alpha) = \sin(2\alpha) \] ### Step 3: Use the double angle identity Using the double angle identity for sine, we have: \[ \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \] Thus, our equation becomes: \[ -\cos(\alpha) = 2\sin(\alpha)\cos(\alpha) \] ### Step 4: Rearranging the equation Rearranging gives us: \[ -\cos(\alpha) - 2\sin(\alpha)\cos(\alpha) = 0 \] Factoring out \(\cos(\alpha)\): \[ \cos(\alpha)(-1 - 2\sin(\alpha)) = 0 \] ### Step 5: Solve for \(\alpha\) This gives us two cases to consider: 1. \(\cos(\alpha) = 0\) 2. \(-1 - 2\sin(\alpha) = 0\) **Case 1:** \(\cos(\alpha) = 0\) This occurs at: \[ \alpha = \frac{\pi}{2}, \frac{3\pi}{2} \] **Case 2:** \(-1 - 2\sin(\alpha) = 0\) Solving for \(\sin(\alpha)\): \[ \sin(\alpha) = -\frac{1}{2} \] This occurs at: \[ \alpha = \frac{7\pi}{6}, \frac{11\pi}{6} \] ### Step 6: Summary of solutions The values of \(\alpha\) that satisfy the equation are: - \(\alpha = \frac{\pi}{2}\) - \(\alpha = \frac{3\pi}{2}\) - \(\alpha = \frac{7\pi}{6}\) - \(\alpha = \frac{11\pi}{6}\) ### Step 7: Identify the value that does not satisfy the equation The value of \(\alpha\) in the interval \([0, 2\pi]\) that does not satisfy the equation is: \[ \alpha = \pi \] ### Final Answer The value of \(\alpha\) in \([0, 2\pi]\) which does not satisfy the equation is \(\pi\). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) [2sin x]dx=

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

If alpha and beta are two different values of theta lying between 0 and 2pi which satisfy the equations 6costheta+8sin theta=9 , find the value of sin2(alpha+beta) .

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

The set of values of alpha (alpha gt 0) for which the inequality int_(-alpha)^(alpha) e^x dx gt 3/2 holds true is :

The value of int_(0)^(2pi) |cos x -sin x|dx is

The number of value of alpha in the interval [-pi,0] satisfying sin alpha +int_(alpha )^(2alpha) cos 2 x dx =0 , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  2. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  3. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  4. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  5. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  6. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  7. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  8. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  9. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  10. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  11. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  12. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  13. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  14. If Im=int1^x(logx)^mdx satisfies the relation (Im)=k-l I(m-1) then

    Text Solution

    |

  15. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  16. If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 ), t...

    Text Solution

    |

  17. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  18. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  19. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  20. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |