Home
Class 12
MATHS
The value of int(0)^(pi//2) (sin^(3)x co...

The value of `int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx` is

A

`pi//8`

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x}{\sin^4 x + \cos^4 x} \, dx, \] we will use the property of definite integrals and some algebraic manipulations. ### Step 1: Use the property of definite integrals We know that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] Applying this property, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)}{\sin^4\left(\frac{\pi}{2} - x\right) + \cos^4\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the terms Using the identities \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\) and \(\cos\left(\frac{\pi}{2} - x\right) = \sin x\), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x \sin x}{\cos^4 x + \sin^4 x} \, dx. \] ### Step 3: Add the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x}{\sin^4 x + \cos^4 x} \, dx\) 2. \(I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x \sin x}{\cos^4 x + \sin^4 x} \, dx\) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^3 x \cos x + \cos^3 x \sin x}{\sin^4 x + \cos^4 x} \right) \, dx. \] ### Step 4: Factor out common terms Notice that \(\sin^3 x \cos x + \cos^3 x \sin x = \sin x \cos x (\sin^2 x + \cos^2 x) = \sin x \cos x\) since \(\sin^2 x + \cos^2 x = 1\). Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 5: Simplify the denominator We can rewrite \(\sin^4 x + \cos^4 x\) using the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] ### Step 6: Substitute and simplify Thus, we can express \(2I\) as: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 - 2\sin^2 x \cos^2 x} \, dx. \] ### Step 7: Use the substitution \(u = \sin 2x\) Let \(u = \sin 2x\), then \(du = 2\cos 2x \, dx\) or \(dx = \frac{du}{2\cos 2x}\). The limits change from \(0\) to \(1\) as \(x\) goes from \(0\) to \(\frac{\pi}{2}\). ### Step 8: Solve the integral After substituting and simplifying, we can evaluate the integral using standard integral formulas. ### Final Step: Calculate the value of \(I\) After performing the calculations, we find that: \[ I = \frac{\pi}{8}. \] ### Conclusion Thus, the value of the integral is \[ \boxed{\frac{\pi}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

int_(0)^( pi/2)(sin^(1/4)x)/(sin^(1/4)x+cos^(1/4)x)dx

The value of int_(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If [int0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int- 3^3(t^2sin2t)/(t^2+1)dt]x-...

    Text Solution

    |

  2. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  3. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  4. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  5. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  6. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  7. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  8. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  9. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  10. If Im=int1^x(logx)^mdx satisfies the relation (Im)=k-l I(m-1) then

    Text Solution

    |

  11. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  12. If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 ), t...

    Text Solution

    |

  13. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  14. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  15. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  16. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  17. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  18. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  19. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  20. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |