Home
Class 12
MATHS
underset(nrarroo)"lim"[sin'(pi)/(n)+sin'...

`underset(nrarroo)"lim"[sin'(pi)`/(n)+sin'(2pi)`/(n)+"......"+sin((n-1))/(n)`pi`] is equal to :

A

0

B

`pi`

C

`oo`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \cdots + \sin\left(\frac{(n-1)\pi}{n}\right) \right), \] we can use the formula for the sum of sines. The sum can be expressed as: \[ \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right). \] ### Step 1: Use the formula for the sum of sines The formula for the sum of sines is given by: \[ \sum_{k=1}^{m} \sin(k\theta) = \frac{\sin\left(\frac{m\theta}{2}\right) \sin\left(\frac{(m+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}. \] In our case, \( m = n-1 \) and \( \theta = \frac{\pi}{n} \). Thus, we can write: \[ \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{\sin\left(\frac{(n-1)\pi}{2n}\right) \sin\left(\frac{n\pi}{2n}\right)}{\sin\left(\frac{\pi}{2n}\right)}. \] ### Step 2: Simplify the expression Now we can simplify the expression: \[ = \frac{\sin\left(\frac{(n-1)\pi}{2n}\right) \sin\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{2n}\right)}. \] Since \( \sin\left(\frac{\pi}{2}\right) = 1 \), we have: \[ = \frac{\sin\left(\frac{(n-1)\pi}{2n}\right)}{\sin\left(\frac{\pi}{2n}\right)}. \] ### Step 3: Evaluate the limit Now we need to evaluate the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{\sin\left(\frac{(n-1)\pi}{2n}\right)}{\sin\left(\frac{\pi}{2n}\right)}. \] As \( n \to \infty \), both \( \frac{(n-1)\pi}{2n} \) and \( \frac{\pi}{2n} \) approach \( 0 \). Therefore, we can use the small angle approximation \( \sin(x) \approx x \) when \( x \) is small: \[ \sin\left(\frac{(n-1)\pi}{2n}\right) \approx \frac{(n-1)\pi}{2n} \quad \text{and} \quad \sin\left(\frac{\pi}{2n}\right) \approx \frac{\pi}{2n}. \] Substituting these approximations into our limit gives: \[ \lim_{n \to \infty} \frac{\frac{(n-1)\pi}{2n}}{\frac{\pi}{2n}} = \lim_{n \to \infty} \frac{(n-1)}{1} = \lim_{n \to \infty} (n-1) = \infty. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \cdots + \sin\left(\frac{(n-1)\pi}{n}\right) \right) = \infty. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to : (A) 0 (B) pi (C) 2 (D) ∞

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

The value of lim_(nrarroo) 1/n^2[sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n)+"......."+n sin^(3)'(npi)/(4n)]

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

If S=cos^2pi/2+cos^2(2pi)/n+....+cos^2((n-1)pi)/(n), then S equals

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  2. The value of int0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi...

    Text Solution

    |

  3. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin((n-1))/...

    Text Solution

    |

  4. underset(nrarr0)" lim" underset(r=1)overset(n)sum((r^(3))/(r^(4)+n^(4)...

    Text Solution

    |

  5. The value of lim(n to oo) {(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))...(2)}^(1...

    Text Solution

    |

  6. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  7. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  8. If Im=int1^x(logx)^mdx satisfies the relation (Im)=k-l I(m-1) then

    Text Solution

    |

  9. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  10. If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 ), t...

    Text Solution

    |

  11. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  12. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  13. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  14. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  15. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  16. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  17. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  18. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  19. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  20. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |