Home
Class 12
MATHS
The value of integral int(1)^(e) (log x)...

The value of integral `int_(1)^(e) (log x)^(3)dx` , is

A

`6+2e`

B

`6-2e`

C

`2e-6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{e} (\log x)^3 \, dx \), we will use a substitution method. Here are the steps to find the value of the integral: ### Step 1: Substitution Let \( x = e^y \). Then, the differential \( dx \) can be expressed as: \[ dx = e^y \, dy \] ### Step 2: Change the limits When \( x = 1 \): \[ y = \log(1) = 0 \] When \( x = e \): \[ y = \log(e) = 1 \] Thus, the limits change from \( x = 1 \) to \( x = e \) into \( y = 0 \) to \( y = 1 \). ### Step 3: Rewrite the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{0}^{1} (\log(e^y))^3 e^y \, dy \] Using the property of logarithms, \( \log(e^y) = y \): \[ I = \int_{0}^{1} (y)^3 e^y \, dy \] ### Step 4: Integration by parts We will use integration by parts to solve \( \int y^3 e^y \, dy \). Let: - \( u = y^3 \) → \( du = 3y^2 \, dy \) - \( dv = e^y \, dy \) → \( v = e^y \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int y^3 e^y \, dy = y^3 e^y - \int e^y (3y^2) \, dy \] ### Step 5: Repeat integration by parts Now we need to evaluate \( \int 3y^2 e^y \, dy \) using integration by parts again: - Let \( u = 3y^2 \) → \( du = 6y \, dy \) - \( dv = e^y \, dy \) → \( v = e^y \) Thus, \[ \int 3y^2 e^y \, dy = 3y^2 e^y - \int e^y (6y) \, dy \] ### Step 6: Repeat again Now we evaluate \( \int 6y e^y \, dy \): - Let \( u = 6y \) → \( du = 6 \, dy \) - \( dv = e^y \, dy \) → \( v = e^y \) Thus, \[ \int 6y e^y \, dy = 6y e^y - \int 6 e^y \, dy = 6y e^y - 6 e^y \] ### Step 7: Combine results Now, substituting back: \[ \int y^3 e^y \, dy = y^3 e^y - (3y^2 e^y - (6y e^y - 6 e^y)) \] Combining everything: \[ = y^3 e^y - 3y^2 e^y + 6y e^y - 6 e^y \] ### Step 8: Evaluate from 0 to 1 Now we evaluate the expression from 0 to 1: \[ = \left[ y^3 e^y - 3y^2 e^y + 6y e^y - 6 e^y \right]_{0}^{1} \] Calculating at \( y = 1 \): \[ = (1^3 e^1 - 3(1^2)e^1 + 6(1)e^1 - 6e^1) = (e - 3e + 6e - 6e) = -2e \] Calculating at \( y = 0 \): \[ = (0 - 0 + 0 - 6) = -6 \] Thus, the final value is: \[ I = (-2e + 6) - 0 = 6 - 2e \] ### Final Answer The value of the integral is: \[ \int_{1}^{e} (\log x)^3 \, dx = 6 - 2e \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(1//e)^(e) |logx|dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  2. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  3. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  4. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  5. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  6. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  7. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  8. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  9. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  10. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  11. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  12. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  13. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  16. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  17. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  18. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  19. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  20. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |