Home
Class 12
MATHS
lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)...

`lim_(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)`

A

`4//e`

B

`e//4`

C

4e

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{n \to \infty} \left( (1 + \frac{1}{n})(1 + \frac{2}{n}) \cdots (1 + \frac{n}{n}) \right)^{\frac{1}{n}}, \] we will follow these steps: ### Step 1: Define the Limit Let \[ L = \lim_{n \to \infty} \left( (1 + \frac{1}{n})(1 + \frac{2}{n}) \cdots (1 + \frac{n}{n}) \right)^{\frac{1}{n}}. \] ### Step 2: Take the Natural Logarithm Taking the natural logarithm of both sides, we have: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \log \left( (1 + \frac{1}{n})(1 + \frac{2}{n}) \cdots (1 + \frac{n}{n}) \right). \] Using the property of logarithms, we can separate the logarithm of the product: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \log(1 + \frac{1}{n}) + \log(1 + \frac{2}{n}) + \cdots + \log(1 + \frac{n}{n}) \right). \] ### Step 3: Rewrite as a Summation This can be rewritten as: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \log(1 + \frac{k}{n}). \] ### Step 4: Recognize the Riemann Sum As \( n \to \infty \), the expression becomes a Riemann sum for the integral of \( \log(1 + x) \) from 0 to 1: \[ \log L = \int_0^1 \log(1 + x) \, dx. \] ### Step 5: Compute the Integral To compute the integral, we can use integration by parts. Let: - \( u = \log(1 + x) \) and \( dv = dx \). Then, we have: - \( du = \frac{1}{1 + x} dx \) and \( v = x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int_0^1 \log(1 + x) \, dx = \left[ x \log(1 + x) \right]_0^1 - \int_0^1 \frac{x}{1 + x} \, dx. \] Evaluating the first term: \[ \left[ x \log(1 + x) \right]_0^1 = 1 \cdot \log(2) - 0 = \log(2). \] ### Step 6: Compute the Remaining Integral Now we compute: \[ \int_0^1 \frac{x}{1 + x} \, dx = \int_0^1 \left( 1 - \frac{1}{1 + x} \right) dx = \left[ x - \log(1 + x) \right]_0^1 = (1 - \log(2)) - (0 - 0) = 1 - \log(2). \] ### Step 7: Combine Results Substituting back, we have: \[ \log L = \log(2) - (1 - \log(2)) = 2 \log(2) - 1. \] ### Step 8: Exponentiate to Find L Thus, we find: \[ L = e^{\log L} = e^{2 \log(2) - 1} = \frac{4}{e}. \] ### Final Answer Therefore, the final result is: \[ \lim_{n \to \infty} \left( (1 + \frac{1}{n})(1 + \frac{2}{n}) \cdots (1 + \frac{n}{n}) \right)^{\frac{1}{n}} = \frac{4}{e}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

lim_(n rarr oo)2^(1/n)

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

lim_(n to oo)(int_(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int_(1//(n+1))^(1//n)sin^(-1)(nx)dx) is equal to

lim_(n to oo)(n!)/((n+1)!-n!)

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  15. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |