Home
Class 12
MATHS
The value of the integral int(0)^(1) co...

The value of the integral ` int_(0)^(1) cot^(-1) (1-x+x^(2))dx`, is

A

`pi-log 2`

B

`(pi)/(2)-log 2`

C

`pi+log 2`

D

`(pi)/(2) +log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \), we will follow these steps: ### Step 1: Change of Variable Let \( x^2 = t \). Then, differentiating both sides gives \( 2x \, dx = dt \), or \( x \, dx = \frac{dt}{2} \). ### Step 2: Update the Limits When \( x = 0 \), \( t = 0^2 = 0 \). When \( x = 1 \), \( t = 1^2 = 1 \). Thus, the limits of integration remain from 0 to 1. ### Step 3: Substitute in the Integral Now substituting \( x^2 = t \) into the integral, we have: \[ I = \int_0^1 \cot^{-1}(1 - t + t) \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int_0^1 \cot^{-1}(1 - t + t^2) \, dt \] ### Step 4: Simplify the Argument of Cotangent Inverse The expression inside the cotangent inverse simplifies to: \[ I = \frac{1}{2} \int_0^1 \cot^{-1}(1 - t + t^2) \, dt \] ### Step 5: Use Symmetry Property Using the property of integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] we can write: \[ I = \frac{1}{2} \left( \int_0^1 \cot^{-1}(1 - t + t^2) \, dt + \int_0^1 \cot^{-1}(1 - (1 - t) + (1 - t)^2) \, dt \right) \] This means we can evaluate the integral with the substitution \( u = 1 - t \). ### Step 6: Evaluate the Integral Now we can evaluate: \[ I = \frac{1}{2} \left( \int_0^1 \cot^{-1}(1 - t + t^2) \, dt + \int_0^1 \cot^{-1}(t^2 - t + 1) \, dt \right) \] Both integrals are equal due to symmetry, so we can combine them: \[ I = \frac{1}{2} \cdot 2 \int_0^1 \cot^{-1}(1 - t + t^2) \, dt = \int_0^1 \cot^{-1}(1 - t + t^2) \, dt \] ### Step 7: Final Calculation Now we can evaluate the final integral: \[ I = \frac{\pi}{4} - \frac{1}{2} \log(2) \] ### Final Answer Thus, the value of the integral \( I \) is: \[ \frac{\pi}{4} - \frac{1}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

Evaluate : int_(0)^(1) cot^(-1) (1-x + x^(2))dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-1)^(1) sin^(11)x" dx" is

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  15. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |