Home
Class 12
MATHS
Let I= int(0)^(1) (e^(x))/( x+1) dx, th...

Let `I= int_(0)^(1) (e^(x))/( x+1)` dx, then the vlaue of the intergral ` int_(0)^(1) (xe^(x^(2)))/( x^(2)+1)` dx, is

A

`I^(2)`

B

`(1)/(2) I`

C

`2I`

D

`(1)/(2) I^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( J = \int_{0}^{1} \frac{x e^{x^2}}{x^2 + 1} \, dx \), we can use a substitution method. Let's go through the solution step-by-step. ### Step 1: Substitution Let \( t = x^2 \). Then, differentiating both sides gives us: \[ dt = 2x \, dx \quad \Rightarrow \quad \frac{dt}{2} = x \, dx \] ### Step 2: Change of Limits When \( x = 0 \), \( t = 0^2 = 0 \). When \( x = 1 \), \( t = 1^2 = 1 \). Thus, the limits of integration remain the same: from \( 0 \) to \( 1 \). ### Step 3: Rewrite the Integral Now, substituting \( t \) into the integral: \[ J = \int_{0}^{1} \frac{x e^{x^2}}{x^2 + 1} \, dx = \int_{0}^{1} \frac{e^{t}}{t + 1} \cdot \frac{dt}{2} \] This simplifies to: \[ J = \frac{1}{2} \int_{0}^{1} \frac{e^{t}}{t + 1} \, dt \] ### Step 4: Recognize the Integral Notice that the integral \( \int_{0}^{1} \frac{e^{t}}{t + 1} \, dt \) is the same as the integral \( I \) given in the problem: \[ I = \int_{0}^{1} \frac{e^{x}}{x + 1} \, dx \] Thus, we can write: \[ J = \frac{1}{2} I \] ### Final Answer Therefore, the value of the integral \( J \) is: \[ J = \frac{I}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

int_(0)^(1) x e^(x) dx=1

int_(-1)^(1)e^(2x)dx

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1) (1)/(x^(2)+x+1)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(1) (1)/(1+x+2x^(2))dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  15. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |