Home
Class 12
MATHS
int(pi)^(10n) |sin x|dx is equla to...

`int_(pi)^(10n) |sin x|dx` is equla to

A

20

B

8

C

10

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\pi}^{10\pi} |\sin x| \, dx \), we can break it down into manageable parts. Here’s a step-by-step solution: ### Step 1: Analyze the Periodicity of \( |\sin x| \) The function \( \sin x \) is periodic with a period of \( 2\pi \). Therefore, \( |\sin x| \) is also periodic with the same period. This means that we can break the integral into intervals of \( 2\pi \). ### Step 2: Break Down the Integral We can express the integral from \( \pi \) to \( 10\pi \) as follows: \[ I = \int_{\pi}^{2\pi} |\sin x| \, dx + \int_{2\pi}^{10\pi} |\sin x| \, dx \] ### Step 3: Evaluate the First Integral In the interval \( [\pi, 2\pi] \), \( \sin x \) is negative. Therefore, \( |\sin x| = -\sin x \) in this interval: \[ \int_{\pi}^{2\pi} |\sin x| \, dx = \int_{\pi}^{2\pi} -\sin x \, dx \] Calculating this integral: \[ \int -\sin x \, dx = \cos x + C \] Now, evaluating from \( \pi \) to \( 2\pi \): \[ \left[ \cos x \right]_{\pi}^{2\pi} = \cos(2\pi) - \cos(\pi) = 1 - (-1) = 2 \] ### Step 4: Evaluate the Second Integral For the interval \( [2\pi, 10\pi] \), we can break it down further into smaller intervals of \( 2\pi \): \[ \int_{2\pi}^{10\pi} |\sin x| \, dx = \sum_{n=1}^{8} \int_{(2n-2)\pi}^{(2n)\pi} |\sin x| \, dx \] Each of these integrals from \( (2n-2)\pi \) to \( (2n)\pi \) will contribute the same value as the integral from \( 0 \) to \( 2\pi \) because of the periodicity of \( |\sin x| \). Calculating \( \int_{0}^{2\pi} |\sin x| \, dx \): \[ \int_{0}^{2\pi} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} -\sin x \, dx \] Calculating both parts: 1. From \( 0 \) to \( \pi \): \[ \int_{0}^{\pi} \sin x \, dx = \left[-\cos x\right]_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] 2. From \( \pi \) to \( 2\pi \): \[ \int_{\pi}^{2\pi} -\sin x \, dx = 2 \quad \text{(as calculated earlier)} \] Thus, \[ \int_{0}^{2\pi} |\sin x| \, dx = 2 + 2 = 4 \] ### Step 5: Combine the Results Now, we have: \[ I = \int_{\pi}^{2\pi} |\sin x| \, dx + \int_{2\pi}^{10\pi} |\sin x| \, dx \] Substituting the values we found: \[ I = 2 + 4 \times 4 = 2 + 16 = 18 \] ### Final Answer Thus, the value of the integral \( \int_{\pi}^{10\pi} |\sin x| \, dx \) is: \[ \boxed{18} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) |sin 2pi x|dx id equal to

int_(0)^(1//2) |sin pi x|dx is equal to

int_(-pi/2)^(pi/2) |sin x| dx

int_(0)^(pi) [2sin x]dx=

int_(-pi //2)^(pi//2) sin |x|dx is equal to

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi) sin 3x dx

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(0)^(pi) x sin^(2) x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  15. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |