Home
Class 12
MATHS
lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n...

`lim_(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=`

A

`(99)/(100)`

B

`(1)/(100)`

C

`(1)/(99)`

D

`(1)/(101)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1^{99} + 2^{99} + 3^{99} + \ldots + n^{99}}{n^{100}}, \] we will follow these steps: ### Step 1: Recognize the Summation The numerator consists of the sum of the first \( n \) integers raised to the 99th power. We can denote this summation as: \[ S_n = 1^{99} + 2^{99} + 3^{99} + \ldots + n^{99}. \] ### Step 2: Use the Formula for the Sum of Powers The sum of the first \( n \) integers raised to the \( k \)-th power can be approximated using the formula: \[ \sum_{k=1}^{n} k^p \sim \frac{n^{p+1}}{p+1} \quad \text{as } n \to \infty. \] For our case, \( p = 99 \): \[ S_n \sim \frac{n^{100}}{100} \quad \text{as } n \to \infty. \] ### Step 3: Substitute Back into the Limit Now we can substitute this approximation into our limit: \[ \lim_{n \to \infty} \frac{S_n}{n^{100}} \sim \lim_{n \to \infty} \frac{\frac{n^{100}}{100}}{n^{100}}. \] ### Step 4: Simplify the Expression This simplifies to: \[ \lim_{n \to \infty} \frac{1}{100} = \frac{1}{100}. \] ### Step 5: Conclusion Thus, the final result is: \[ \lim_{n \to \infty} \frac{1^{99} + 2^{99} + 3^{99} + \ldots + n^{99}}{n^{100}} = \frac{1}{100}. \] ### Final Answer The answer is \[ \frac{1}{100}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n rarr oo)2^(1/n)

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

An equation a_0+a_1x+a_2x^2+...............+a_99x^99+x^100=0 has roots .^(99)C_0 ,.^(99)C_1,.^(99)C_2....^(99)C_99 . Find the value of a_99 .

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

If the remainder R(x)=ax+b is ontained by dividing the polynomial x^(100) by the polynomial x^(2)-3x+2 then (A) a=2^(100)-1 (B) b=2(2^(99)-1) (C) b=-2(2^(99)-1) (D) a=2^(100)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Let S = sum_(n =1)^(99) (5^(100))/((25)^(n) + 5^(100)) . Find [S]. Where [y] denotes largest integer less than or equal to y.

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. If int0^1 e^(x^2)(x-alpha)dx=0, then (a)alphalt2 (b)alphalt0 (c)"" 0l...

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If int(0)^(oo)e^(-ax)dx=(1)/(a)," then "int(0)^(oo)x^(n)e^(-ax)dx is

    Text Solution

    |

  15. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. I(n)=int(0)^(pi//4)tan^(n)xdx, then lim(n to oo)n[I(n)+I(n+2)] equals ...

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |