Home
Class 12
MATHS
The value of a for which the function f(...

The value of `a` for which the function `f(x)=asinx+(1/3)sin3x` has an extremum at `x=pi/3` is (a) 1 (b) `-1` (c) 0 (d) 2

A

1

B

-1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

If f(x) has an ectremum at ` x=pi//3`, then
`f'(x)=0 " at " x=pi//3`.
Now , `f(x) =asinx+1/3sin3x`
`rArr f'(x) =acosx+cos3x`
`therefore f'(pi//3)=0rArr acos(pi//3)+cospi=0rArra=2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) = a sin x + 1/3 sin 3x is maximum at x= pi/3 a=?

Determine the value of a ,b ,c for which the function f(x)={(sin(a+1)x+sinx)/x c(sqrt(x+b x^2)-sqrt(x))/(b x^(3/2)) , fx 0

The maximum value of the function f(x)=(1+x)^(0.3)/(1+x^(0.3)) in [0,1] is

The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0 may be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :

The value of a for which all extremum of function f(x)=x^(3)+3ax^(2)+3(a^(2)-1)x+1 , lie in the interval (2, 4) is

The period of the function f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+pi/3)) is (where c is constant) 1 (b) pi/2 (c) pi (d) cannot be determined

Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) is not differentiable, is: (A) 0 (B) 1 (C) 2 (D) 3

Discuss the extremum of f(x)=sinx+1/2sin2x+1/3sin3x ,0lt=xlt=pidot

If f(x)={(ax^2+b ,0lex<1),(4,x=1),(x+3,1ltxge2)) then the value of (a ,b) for which f(x) cannot be continuous at x=1, is (a) (2,2) (b) (3,1) (c) (4,0) (d) (5,2)