Home
Class 12
MATHS
Let f(x) be a function defined by f(x)...

Let f(x) be a function defined by
`f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3]`
Then the range of f(x), is

A

[0,2]

B

`[-1/4,4]`

C

`[-1/4,2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \int_{1}^{x} t(t^2 - 3t + 2) \, dt \) for \( x \in [1, 3] \), we will follow these steps: ### Step 1: Simplify the integrand First, we simplify the expression inside the integral: \[ t(t^2 - 3t + 2) = t^3 - 3t^2 + 2t \] ### Step 2: Set up the integral Now we can express \( f(x) \) as: \[ f(x) = \int_{1}^{x} (t^3 - 3t^2 + 2t) \, dt \] ### Step 3: Integrate term by term We will integrate each term separately: \[ \int t^3 \, dt = \frac{t^4}{4}, \quad \int t^2 \, dt = \frac{t^3}{3}, \quad \int t \, dt = \frac{t^2}{2} \] Thus, \[ f(x) = \left[ \frac{t^4}{4} - 3 \cdot \frac{t^3}{3} + 2 \cdot \frac{t^2}{2} \right]_{1}^{x} \] This simplifies to: \[ f(x) = \left[ \frac{t^4}{4} - t^3 + t^2 \right]_{1}^{x} \] ### Step 4: Evaluate the definite integral Now we evaluate the integral at the limits: \[ f(x) = \left( \frac{x^4}{4} - x^3 + x^2 \right) - \left( \frac{1^4}{4} - 1^3 + 1^2 \right) \] Calculating the value at \( t = 1 \): \[ \frac{1}{4} - 1 + 1 = \frac{1}{4} \] Thus, \[ f(x) = \left( \frac{x^4}{4} - x^3 + x^2 \right) - \frac{1}{4} \] This gives: \[ f(x) = \frac{x^4}{4} - x^3 + x^2 - \frac{1}{4} \] ### Step 5: Find the critical points To find the range, we need to find the critical points by differentiating \( f(x) \): \[ f'(x) = x^3 - 3x^2 + 2x \] Setting \( f'(x) = 0 \): \[ x^3 - 3x^2 + 2x = 0 \] Factoring out \( x \): \[ x(x^2 - 3x + 2) = 0 \] This gives: \[ x(x-1)(x-2) = 0 \] Thus, \( x = 0, 1, 2 \). ### Step 6: Evaluate \( f(x) \) at the endpoints and critical points We evaluate \( f(x) \) at \( x = 1, 2, 3 \): 1. \( f(1) = 0 \) 2. \( f(2) = \frac{2^4}{4} - 2^3 + 2^2 - \frac{1}{4} = \frac{16}{4} - 8 + 4 - \frac{1}{4} = 4 - 8 + 4 - \frac{1}{4} = 0 - \frac{1}{4} = -\frac{1}{4} \) 3. \( f(3) = \frac{3^4}{4} - 3^3 + 3^2 - \frac{1}{4} = \frac{81}{4} - 27 + 9 - \frac{1}{4} = \frac{81 - 108 + 36 - 1}{4} = \frac{8}{4} = 2 \) ### Step 7: Determine the range From the evaluations: - \( f(1) = 0 \) - \( f(2) = -\frac{1}{4} \) - \( f(3) = 2 \) Thus, the range of \( f(x) \) as \( x \) varies from 1 to 3 is: \[ [-\frac{1}{4}, 2] \] ### Final Answer The range of \( f(x) \) is \([-1/4, 2]\).

To find the range of the function \( f(x) = \int_{1}^{x} t(t^2 - 3t + 2) \, dt \) for \( x \in [1, 3] \), we will follow these steps: ### Step 1: Simplify the integrand First, we simplify the expression inside the integral: \[ t(t^2 - 3t + 2) = t^3 - 3t^2 + 2t \] ...
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x)=int_1^xt(t^2-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x) be a function defined as f(x)={{:(,int_(0)^(x)(3+|t-2|),"if "x gt 4),(,2x+8,"if "x le 4):} Then, f(x) is

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. Let f(x)=int(0)^(x) (sint-cost)(e^t-2)(t-1)^3(t-1)^3(t-2)^5 dt , 0lt x...

    Text Solution

    |

  2. Let f(x) be a function defined as follows: f(x)=sin(x^2-3x),xlt=0; a n...

    Text Solution

    |

  3. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^2-3t+2)dt,x in ...

    Text Solution

    |

  4. The function f(x)=(4sin^2x-1)^n(x^2-x+1),n in N , has a local minimum...

    Text Solution

    |

  5. Find the set of critical points of the function f(x)=x-logx+int(2)^(...

    Text Solution

    |

  6. If h(x)=f(x)+f(-x), " then " h(x) has got and extreme value at a point...

    Text Solution

    |

  7. Let f(x)=(x-2)^2x^n, n in N Then f(x) has a minimum at

    Text Solution

    |

  8. The difference between the greateset ahnd least vlaue of the function ...

    Text Solution

    |

  9. Set of values of b for which local extrema of the function f(x) are po...

    Text Solution

    |

  10. if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

    Text Solution

    |

  11. if f(x)=(sin (x+alpha)/(sin(x+beta),alpha ne beta then f(x) has

    Text Solution

    |

  12. Let f(x)=1+2x^2+2^2x^4+.....+2^(10)x^(20). The , f(x) has

    Text Solution

    |

  13. The function f(x)=(x)/(1+x tanx )

    Text Solution

    |

  14. A polynomial function f(x) is such that f'(4)= f''(4)=0 and f(x) has m...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. In the interval (0,pi//2) the fucntion f(x)= tan^nx+cot^nx attains

    Text Solution

    |

  17. The fraction exceeding its pth power by the greatest number possible, ...

    Text Solution

    |

  18. The greatest value of the fucntion f(x)=sin^(-1)x^2 in interval [-1//...

    Text Solution

    |

  19. The minimum value of the fuction f(x)=2|x-2|+5|x-3| for all x in R ,...

    Text Solution

    |

  20. The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-...

    Text Solution

    |