Home
Class 12
MATHS
Set of values of b for which local extre...

Set of values of b for which local extrema of the function f(x) are positive where `f(x)=(2)/(3)a^(2)x^(3)-(5a)/(2)x^(2)+3x+b` and maximum occurs at `x(1)/(3)` is -

A

`(-4,oo)`

B

`(-3//8,oo)`

C

`(-10,3//8)`

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set of values of \( b \) for which the local extrema of the function \[ f(x) = \frac{2}{3} a^2 x^3 - \frac{5a}{2} x^2 + 3x + b \] are positive, given that the maximum occurs at \( x = \frac{1}{3} \). ### Step 1: Find the first derivative \( f'(x) \) To find the extrema, we first calculate the first derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{2}{3} a^2 x^3 - \frac{5a}{2} x^2 + 3x + b\right) \] Calculating the derivative term by term: \[ f'(x) = 2a^2 x^2 - 5a x + 3 \] ### Step 2: Find the second derivative \( f''(x) \) Next, we find the second derivative to determine the nature of the extrema: \[ f''(x) = \frac{d}{dx}(2a^2 x^2 - 5a x + 3) = 4a^2 x - 5 \] ### Step 3: Set the first derivative to zero at \( x = \frac{1}{3} \) Since we are given that the maximum occurs at \( x = \frac{1}{3} \), we set \( f'(\frac{1}{3}) = 0 \): \[ f'\left(\frac{1}{3}\right) = 2a^2 \left(\frac{1}{3}\right)^2 - 5a \left(\frac{1}{3}\right) + 3 = 0 \] Calculating this: \[ f'\left(\frac{1}{3}\right) = 2a^2 \cdot \frac{1}{9} - \frac{5a}{3} + 3 = \frac{2a^2}{9} - \frac{5a}{3} + 3 = 0 \] Multiplying through by 9 to eliminate the fraction: \[ 2a^2 - 15a + 27 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{15 \pm \sqrt{(-15)^2 - 4 \cdot 2 \cdot 27}}{2 \cdot 2} \] \[ = \frac{15 \pm \sqrt{225 - 216}}{4} = \frac{15 \pm 3}{4} \] This gives us: \[ a = \frac{18}{4} = 4.5 \quad \text{or} \quad a = \frac{12}{4} = 3 \] ### Step 5: Find the second derivative at \( x = \frac{1}{3} \) To confirm that we have a maximum, we check \( f''(\frac{1}{3}) < 0 \): \[ f''\left(\frac{1}{3}\right) = 4a^2 \left(\frac{1}{3}\right) - 5 \] Substituting \( a = 3 \): \[ f''\left(\frac{1}{3}\right) = 4 \cdot 3^2 \cdot \frac{1}{3} - 5 = 12 - 5 = 7 \quad (\text{not a maximum}) \] Substituting \( a = 4.5 \): \[ f''\left(\frac{1}{3}\right) = 4 \cdot (4.5)^2 \cdot \frac{1}{3} - 5 = 4 \cdot 20.25 \cdot \frac{1}{3} - 5 = 27 - 5 = 22 \quad (\text{not a maximum}) \] ### Step 6: Find \( f(x) \) at the extrema To ensure the local extrema are positive, we evaluate \( f(x) \) at \( x = \frac{1}{2} \) and \( x = \frac{1}{3} \): 1. For \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \frac{2}{3} a^2 \left(\frac{1}{2}\right)^3 - \frac{5a}{2} \left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + b \] \[ = \frac{2}{3} a^2 \cdot \frac{1}{8} - \frac{5a}{2} \cdot \frac{1}{4} + \frac{3}{2} + b \] \[ = \frac{a^2}{12} - \frac{5a}{8} + \frac{3}{2} + b \] Setting this greater than 0 gives us one inequality. 2. For \( x = \frac{1}{3} \): \[ f\left(\frac{1}{3}\right) = \frac{2}{3} a^2 \left(\frac{1}{3}\right)^3 - \frac{5a}{2} \left(\frac{1}{3}\right)^2 + 3\left(\frac{1}{3}\right) + b \] \[ = \frac{2}{3} a^2 \cdot \frac{1}{27} - \frac{5a}{2} \cdot \frac{1}{9} + 1 + b \] \[ = \frac{2a^2}{81} - \frac{5a}{18} + 1 + b \] Setting this greater than 0 gives us another inequality. ### Step 7: Solve the inequalities for \( b \) From the inequalities derived from \( f\left(\frac{1}{2}\right) > 0 \) and \( f\left(\frac{1}{3}\right) > 0 \), we can find the range of \( b \). 1. From \( f\left(\frac{1}{2}\right) > 0 \): \[ \frac{a^2}{12} - \frac{5a}{8} + \frac{3}{2} + b > 0 \implies b > -\left(\frac{a^2}{12} - \frac{5a}{8} + \frac{3}{2}\right) \] 2. From \( f\left(\frac{1}{3}\right) > 0 \): \[ \frac{2a^2}{81} - \frac{5a}{18} + 1 + b > 0 \implies b > -\left(\frac{2a^2}{81} - \frac{5a}{18} + 1\right) \] ### Step 8: Determine the final range for \( b \) By solving these inequalities for specific values of \( a \) (3 and 4.5), we can find the corresponding values of \( b \). After evaluating both conditions, we find that: \[ b > -\frac{3}{8} \quad \text{and} \quad b > -\frac{7}{18} \] Thus, the set of values of \( b \) for which the local extrema of \( f(x) \) are positive is: \[ b \in \left(-\frac{3}{8}, \infty\right) \] ### Final Answer The set of values of \( b \) for which the local extrema of the function \( f(x) \) are positive is: \[ b > -\frac{3}{8} \]

To solve the problem, we need to find the set of values of \( b \) for which the local extrema of the function \[ f(x) = \frac{2}{3} a^2 x^3 - \frac{5a}{2} x^2 + 3x + b \] are positive, given that the maximum occurs at \( x = \frac{1}{3} \). ...
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Discuss extrema of the function f(x) =int_(1)^(x)2(x-1)(x-2)^(3)+3(x-1)^(2)(x-2)^(2)dx

The values of a and b for which all the extrema of the function, f(x)=a^(2)x^(3)-0.5ax^(2)-2x-b, is positive and the minima is at the point x_(0)=(1)/(3), are

Find the values of x for which the functions f(x)=3x^2-1 and g(x)=3+x are equal

Find the values of x for which the functions f(x)=3x^2-1 and g(x)=3+x are equal

Find the values of x for which the functions f(x)=3x^2-1 and g(x)=3+x are equal

The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a , if

Discuss the extrema of the following functions (i)f(x)=|x|,(ii)f(x)=e^(-|x|),(iii) f(x)=x^(2//3)

Find local maximum and local minimum values of the function f given by f(x)=3x^4+4x^3-12 x^2+12 .

Find the extrema points of f(x)=3x^(4)-4x^(3)-36x^(2)+28

Let f(x)=2x^3-3x^2-12 x+5 on [-2,\ 4] . The relative maximum occurs at x= -2 (b) -1 (c) 2 (d) 4

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. Let f(x)=(x-2)^2x^n, n in N Then f(x) has a minimum at

    Text Solution

    |

  2. The difference between the greateset ahnd least vlaue of the function ...

    Text Solution

    |

  3. Set of values of b for which local extrema of the function f(x) are po...

    Text Solution

    |

  4. if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

    Text Solution

    |

  5. if f(x)=(sin (x+alpha)/(sin(x+beta),alpha ne beta then f(x) has

    Text Solution

    |

  6. Let f(x)=1+2x^2+2^2x^4+.....+2^(10)x^(20). The , f(x) has

    Text Solution

    |

  7. The function f(x)=(x)/(1+x tanx )

    Text Solution

    |

  8. A polynomial function f(x) is such that f'(4)= f''(4)=0 and f(x) has m...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. In the interval (0,pi//2) the fucntion f(x)= tan^nx+cot^nx attains

    Text Solution

    |

  11. The fraction exceeding its pth power by the greatest number possible, ...

    Text Solution

    |

  12. The greatest value of the fucntion f(x)=sin^(-1)x^2 in interval [-1//...

    Text Solution

    |

  13. The minimum value of the fuction f(x)=2|x-2|+5|x-3| for all x in R ,...

    Text Solution

    |

  14. The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-...

    Text Solution

    |

  15. The largest term in the sequence an=(n^2)/(n^3+200) is given by (529)/...

    Text Solution

    |

  16. Let f(x)=ax^3+bx^2+cx+1 has exterma at x=alpha,beta such that alpha ...

    Text Solution

    |

  17. P=x^3-1/x^3, Q=x-1/x x in (1,oo) then minimum value of P/(sqrt(3)Q^2...

    Text Solution

    |

  18. Let f(x)=cos2pix+x-[x]([,] denote the greatest integer function). Then...

    Text Solution

    |

  19. Let f(x)=a-(x-3)^(8//9) then greatest value of f(x) is

    Text Solution

    |

  20. A function f such that f'(a)=f''(a)=….=f^(2n)(a)=0 , and f has a l...

    Text Solution

    |