Home
Class 12
MATHS
P=x^3-1/x^3, Q=x-1/x x in (1,oo) then m...

`P=x^3-1/x^3, Q=x-1/x` `x in (1,oo)` then minimum value of `P/(sqrt(3)Q^2)`

A

`2sqrt(2)`

B

`-2sqrt(3)`

C

non-existent

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \frac{P}{\sqrt{3} Q^2} \) where \( P = x^3 - \frac{1}{x^3} \) and \( Q = x - \frac{1}{x} \) for \( x \in (1, \infty) \), we will follow these steps: ### Step 1: Express \( P \) in terms of \( Q \) We know that: \[ P = x^3 - \frac{1}{x^3} \] Using the identity for the difference of cubes, we can rewrite \( P \): \[ P = (x - \frac{1}{x}) \left( (x - \frac{1}{x})^2 + 3 \right) \] Let \( Q = x - \frac{1}{x} \). Then, we can express \( P \) as: \[ P = Q(Q^2 + 3) \] ### Step 2: Substitute \( P \) in the expression \( \frac{P}{\sqrt{3} Q^2} \) Now we substitute \( P \) into the expression we want to minimize: \[ \frac{P}{\sqrt{3} Q^2} = \frac{Q(Q^2 + 3)}{\sqrt{3} Q^2} \] This simplifies to: \[ \frac{P}{\sqrt{3} Q^2} = \frac{Q^2 + 3}{\sqrt{3}} \] ### Step 3: Minimize \( \frac{Q^2 + 3}{\sqrt{3}} \) To minimize \( \frac{Q^2 + 3}{\sqrt{3}} \), we need to minimize \( Q^2 \). Since \( Q = x - \frac{1}{x} \), we can find the minimum value of \( Q \) for \( x \in (1, \infty) \). ### Step 4: Find the minimum value of \( Q \) The function \( Q = x - \frac{1}{x} \) is increasing for \( x > 1 \). Thus, we evaluate \( Q \) at \( x = 1 \): \[ Q(1) = 1 - \frac{1}{1} = 0 \] As \( x \to \infty \), \( Q \to \infty \). Therefore, the minimum value of \( Q \) in the interval \( (1, \infty) \) is \( 0 \). ### Step 5: Calculate the minimum value of \( \frac{P}{\sqrt{3} Q^2} \) Since \( Q \) approaches \( 0 \) as \( x \) approaches \( 1 \), we can substitute \( Q = 0 \) into our expression: \[ \frac{P}{\sqrt{3} Q^2} = \frac{0 + 3}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] ### Conclusion Thus, the minimum value of \( \frac{P}{\sqrt{3} Q^2} \) is: \[ \sqrt{3} \]

To find the minimum value of \( \frac{P}{\sqrt{3} Q^2} \) where \( P = x^3 - \frac{1}{x^3} \) and \( Q = x - \frac{1}{x} \) for \( x \in (1, \infty) \), we will follow these steps: ### Step 1: Express \( P \) in terms of \( Q \) We know that: \[ P = x^3 - \frac{1}{x^3} \] ...
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If P(x)=x^(3)-1 then the value of P(1)+P(-1) is

If greatest common divisor of x^(3)-x^(2)+px - 7 and x^(2)-4x +q is (x-1) , then the value of p^(2)+q^(2) is

If 2p=x+1/x and 2q=y+1/y , then the value of ((pq+sqrt((p^2-1)(q^2-1)))/(xy+1/(xy))) is

If the solution of the equation |(x^4-9)-(x^2+3)|=|x^4-9|-|x^2+3| is (-oo, p]uu[q ,oo) then value of p+q is (a) p=-3 (b) p=-2 (a) q=2 (d) q=3

If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1) =2 , then the value of the pair ( p,q) for which f(x) cannot be continuous at x =1 is:

f(x)=3^(3)sqrt(x)-5 and g(x)=2px+q^(2) . If f(g(2))=7 ,what is the minimum value of (p+q) if p is a positive integer?

If p (x) = x ^(2) -4x+8 and q 9x)=x-3, what is the value of (q (p (5)))/(p (q (5))) ?

If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], then the value of (p+q) is_______>

If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], then the value of (p+q) is_______>

If (1-p)(1+3x+9x^2+27 x^3+81 x^4+243 x^5)=1-p^6,p!=1 , then the value of p/x is a. 1/3 b. 3 c. 1/2 d. 2

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. The largest term in the sequence an=(n^2)/(n^3+200) is given by (529)/...

    Text Solution

    |

  2. Let f(x)=ax^3+bx^2+cx+1 has exterma at x=alpha,beta such that alpha ...

    Text Solution

    |

  3. P=x^3-1/x^3, Q=x-1/x x in (1,oo) then minimum value of P/(sqrt(3)Q^2...

    Text Solution

    |

  4. Let f(x)=cos2pix+x-[x]([,] denote the greatest integer function). Then...

    Text Solution

    |

  5. Let f(x)=a-(x-3)^(8//9) then greatest value of f(x) is

    Text Solution

    |

  6. A function f such that f'(a)=f''(a)=….=f^(2n)(a)=0 , and f has a l...

    Text Solution

    |

  7. Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of ...

    Text Solution

    |

  8. The maximum value of cos (int(2x)^(x^(2)) e^t sin^2 " t dt ")

    Text Solution

    |

  9. Let f (x)= {{:(1+ sin x "," , x lt 0),( x ^(2) -x+1",", x ge 0):}, the...

    Text Solution

    |

  10. Let f(x)=x^(n+1)+ax^n, "where " a gt 0. Then, x=0 is point of

    Text Solution

    |

  11. The greph of y=x^3+ax^2+bx+c has no extemun if and only if

    Text Solution

    |

  12. If f(x) =underset(x)overset(x^2)int(t-1)dt, 1 le x le 2 then the great...

    Text Solution

    |

  13. If the parabola y=ax^2+bx+c has vertex at(4,2)and a in [1,3] then the...

    Text Solution

    |

  14. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  15. Find a quadratic polynomial varphi(x) whose zeros are the maximum ...

    Text Solution

    |

  16. Let f(x)={{:(x^2+4x "," -3 le x le 0),(-sin x ","0 lt x le pi//2 ),(...

    Text Solution

    |

  17. If alpha be the number of solutions of the equation [sin x] =|x| ) and...

    Text Solution

    |

  18. Let f(x1,x2,x3,x4)=x1^2+x2^2+x3^2+x4^2-2(x1+x2+x3+x4)+10 and x1,x3 i...

    Text Solution

    |

  19. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  20. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |