Home
Class 12
MATHS
In any triangle ABC b^(2)sin2C+c^(2)sin2...

In any `triangle ABC` b^(2)sin2C+c^(2)sin2B=

A

`!`

B

`2!`

C

`3!`

D

`4!`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 21 , then inradius =

In triangle A B C ,b^2sin2C+c^2sin2B=2bc where b=20 ,c=21 , then inradius= (a) 4 (b) 6 (c) 8 (d) 9

In sub - part (i) to (x) choose the correct option and in sub - part (xi) to (xy), answer the questions as intructed . In any triangle ABC, (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))"sin"2C= ________

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In a triangle ABC sin (A/2) sin (B/2) sin (C/2) = 1/8 prove that the triangle is equilateral

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to (A) 2sinAsinBcosC (B) 2sinAcosBsinC (C) 2sinAcosBcosC (D) 2sinAsinBsinC

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

In a triange ABC, if sin(A/2) sin (B/2) sin(C/2) = 1/8 prove that the triangle is equilateral.