Home
Class 12
MATHS
If in a triangleABC , (sinA+sinB+sinC)...

If in a triangle`ABC` ,
(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB` then

A

`A=60^(@)`

B

`B=60^(@)`

C

`C=60^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start from the given equation and use the sine rule to express the sines in terms of the sides of the triangle. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ (sinA + sinB + sinC)(sinA + sinB - sinC) = 3sinAsinB \] 2. **Use the sine rule:** According to the sine rule, we have: \[ \frac{A}{sinA} = \frac{B}{sinB} = \frac{C}{sinC} = 2R \] From this, we can express \(sinA\), \(sinB\), and \(sinC\) in terms of the sides \(A\), \(B\), and \(C\): \[ sinA = \frac{A}{2R}, \quad sinB = \frac{B}{2R}, \quad sinC = \frac{C}{2R} \] 3. **Substitute these values into the equation:** \[ \left(\frac{A}{2R} + \frac{B}{2R} + \frac{C}{2R}\right)\left(\frac{A}{2R} + \frac{B}{2R} - \frac{C}{2R}\right) = 3\left(\frac{A}{2R}\right)\left(\frac{B}{2R}\right) \] 4. **Simplify the left-hand side:** Factor out \(\frac{1}{(2R)^2}\): \[ \frac{1}{(2R)^2}\left(A + B + C\right)\left(A + B - C\right) = \frac{3AB}{4R^2} \] 5. **Multiply both sides by \(4R^2\):** \[ 4R^2 \cdot \frac{1}{(2R)^2}\left(A + B + C\right)\left(A + B - C\right) = 3AB \] This simplifies to: \[ (A + B + C)(A + B - C) = 3AB \] 6. **Expand the left-hand side:** \[ A^2 + B^2 + C^2 + 2AB - C^2 = 3AB \] This simplifies to: \[ A^2 + B^2 - C^2 + 2AB = 3AB \] 7. **Rearranging gives:** \[ A^2 + B^2 - C^2 = AB \] 8. **Use the cosine rule:** Recall that from the cosine rule: \[ cosC = \frac{A^2 + B^2 - C^2}{2AB} \] Substitute \(A^2 + B^2 - C^2\): \[ cosC = \frac{AB}{2AB} = \frac{1}{2} \] 9. **Find angle \(C\):** The angle \(C\) for which \(cosC = \frac{1}{2}\) is: \[ C = cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \text{ or } 60^\circ \] ### Conclusion: Thus, we find that \(C = 60^\circ\).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In triangle A B C ,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In a DeltaABC, sin A sinB sinC is

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

In a Delta ABC, prove that (sinA+sinB)(sinB+sinC)(sinC+sinA)>sinAsinBsinC.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. If sin beta is the GM between sin alpha and cos alpha, then cos 2beta...

    Text Solution

    |

  2. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  3. If in a triangleABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB the...

    Text Solution

    |

  4. In a Delta ABC, sin A + sin B + sin C = 1 + sqrt(2) and cos A+cos B+co...

    Text Solution

    |

  5. Point D,E are taken on the side BC of an acute angled triangle ABC,, s...

    Text Solution

    |

  6. In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

    Text Solution

    |

  7. If A+ B+ C=pi, nin Z,then tan nA+ tan +nB +tan nC is equal to

    Text Solution

    |

  8. If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A...

    Text Solution

    |

  9. If in a triangle ABC, cos A +cos B+cos C=3/2, prove that the triangle ...

    Text Solution

    |

  10. If in a Delta ABC , cos a cos B +- sin A sin B sin C = 1, then show th...

    Text Solution

    |

  11. If in a triangle ABC ,(b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal t...

    Text Solution

    |

  12. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  13. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  14. P(1), P(2), P(3) are altitudes of a triangle ABC from the vertices A, ...

    Text Solution

    |

  15. If median of the DeltaABC through A is perpendicular to BC, then which...

    Text Solution

    |

  16. If in a triangle ABC, (sinA)/(sinC) = (sin(A-B))/(sin(B-C)), then

    Text Solution

    |

  17. If in a !ABC ,a tan A + btanB =(a + b) tan((A+B)/2) , then

    Text Solution

    |

  18. If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , i...

    Text Solution

    |

  19. If in a triangle ABC,(a^(2)-b^(2))/(a^(2)+b^(2))= sin(A-B)/sin(A+B) th...

    Text Solution

    |

  20. If in a triangle ABC, b + c = 3a, then tan(B/2)tan(C/2) is equal to

    Text Solution

    |