Home
Class 12
MATHS
If A,B,C are angles of a triangle ,then ...

If A,B,C are angles of a triangle ,then the minimum value of `tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2)` , is

A

0

B

1

C

`1//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) \) where \( A, B, C \) are the angles of a triangle, we can follow these steps: ### Step 1: Use the identity for angles of a triangle Since \( A + B + C = 180^\circ \), we can express the angles in terms of each other. ### Step 2: Apply the tangent half-angle formula We know that: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{1 - \cos A}{1 + \cos A}} \] Similarly for \( B \) and \( C \). ### Step 3: Use the Cauchy-Schwarz inequality We can apply the Cauchy-Schwarz inequality: \[ (\tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right))(1 + 1 + 1) \geq (\tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) + \tan\left(\frac{C}{2}\right))^2 \] This simplifies to: \[ 3\left(\tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right)\right) \geq \left(\tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) + \tan\left(\frac{C}{2}\right)\right)^2 \] ### Step 4: Analyze the equality condition The equality in Cauchy-Schwarz holds when: \[ \tan\left(\frac{A}{2}\right) = \tan\left(\frac{B}{2}\right) = \tan\left(\frac{C}{2}\right) \] This occurs when \( A = B = C = 60^\circ \). ### Step 5: Calculate the minimum value If \( A = B = C = 60^\circ \): \[ \tan\left(\frac{60^\circ}{2}\right) = \tan(30^\circ) = \frac{1}{\sqrt{3}} \] Thus: \[ \tan^2\left(\frac{60^\circ}{2}\right) = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] So: \[ \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) = 3 \cdot \frac{1}{3} = 1 \] ### Conclusion Therefore, the minimum value of \( \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If A, B, C be an acute angled triangle, then the minimum value of tan^(4)A+tan^(4)B+tan^(4)C will be

If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"(A)/(2) .

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

Let A, B and C are the angles of a plain triangle and tan(A/2)=1/3,tan(B/2)=2/3 .then tan(C/2) is equal to

If A,B,C are angles of a triangle, prove that (tan (B+C)+tan(C+A)+tan(A+B))/(tan (pi-A)+tan(2pi-B)+tan(3pi-C))=1 .

In an actue-angled triangle ABC Statement-1: tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)ge1 Statement-2: tanAtanB tanCge3sqrt3

If A,B,C, are the angles of a triangle such that cot(A/2)=3tan(C/2), then sinA ,sinB ,sinC are in (a) AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan(B+C)/2=cotA/2

If the sides a,b,c of a triangle are in Arithmetic progressioni then find the value of tan (A/2)+tan(C/2) in terms of cot(B/2)

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan((C+A)/2)=cotB/2 (ii) sin((B+C)/2)=cosA/2

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

    Text Solution

    |

  2. If A+ B+ C=pi, nin Z,then tan nA+ tan +nB +tan nC is equal to

    Text Solution

    |

  3. If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A...

    Text Solution

    |

  4. If in a triangle ABC, cos A +cos B+cos C=3/2, prove that the triangle ...

    Text Solution

    |

  5. If in a Delta ABC , cos a cos B +- sin A sin B sin C = 1, then show th...

    Text Solution

    |

  6. If in a triangle ABC ,(b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal t...

    Text Solution

    |

  7. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  8. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  9. P(1), P(2), P(3) are altitudes of a triangle ABC from the vertices A, ...

    Text Solution

    |

  10. If median of the DeltaABC through A is perpendicular to BC, then which...

    Text Solution

    |

  11. If in a triangle ABC, (sinA)/(sinC) = (sin(A-B))/(sin(B-C)), then

    Text Solution

    |

  12. If in a !ABC ,a tan A + btanB =(a + b) tan((A+B)/2) , then

    Text Solution

    |

  13. If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , i...

    Text Solution

    |

  14. If in a triangle ABC,(a^(2)-b^(2))/(a^(2)+b^(2))= sin(A-B)/sin(A+B) th...

    Text Solution

    |

  15. If in a triangle ABC, b + c = 3a, then tan(B/2)tan(C/2) is equal to

    Text Solution

    |

  16. Let ABC be a triangle such that angle A =45^(@) , angle B =75^(@), the...

    Text Solution

    |

  17. If in a DeltaABC , cos A + 2 cosB+cosC= 2, then a,b, c are in

    Text Solution

    |

  18. If the altitudes of a triangle are in A.P,then the sides of the triang...

    Text Solution

    |

  19. In any triangle ABC ,the distance of the orthocentre from the vertice...

    Text Solution

    |

  20. If R is the radius of circumscribing circle of a regular polygon of n-...

    Text Solution

    |