Home
Class 12
MATHS
If in a triangle ABC, b + c = 3a, then t...

If in a triangle ABC, b + c = 3a, then tan`(B/2)tan(C/2)` is equal to

A

1/2

B

1/3

C

1/4

D

1/5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \left( \frac{B}{2} \right) \tan \left( \frac{C}{2} \right) \) given that \( b + c = 3a \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Given Information**: We are given that \( b + c = 3a \). 2. **Using the Semi-Perimeter**: The semi-perimeter \( s \) of triangle \( ABC \) is defined as: \[ s = \frac{a + b + c}{2} \] Since \( b + c = 3a \), we can substitute this into the semi-perimeter formula: \[ s = \frac{a + (b + c)}{2} = \frac{a + 3a}{2} = \frac{4a}{2} = 2a \] 3. **Formulas for \( \tan \left( \frac{B}{2} \right) \) and \( \tan \left( \frac{C}{2} \right) \)**: The formulas for the half-angle tangents are: \[ \tan \left( \frac{B}{2} \right) = \sqrt{\frac{s - c}{s(s - b)}} \] \[ \tan \left( \frac{C}{2} \right) = \sqrt{\frac{s - a}{s(s - b)}} \] 4. **Finding the Product**: We need to find: \[ \tan \left( \frac{B}{2} \right) \tan \left( \frac{C}{2} \right) = \sqrt{\frac{s - c}{s(s - b)}} \cdot \sqrt{\frac{s - a}{s(s - b)}} \] This simplifies to: \[ = \sqrt{\frac{(s - c)(s - a)}{s^2(s - b)^2}} \] 5. **Substituting Values**: Now, substituting \( s = 2a \): - \( s - a = 2a - a = a \) - \( s - b = 2a - b \) - \( s - c = 2a - c \) Therefore, we can rewrite the product: \[ \tan \left( \frac{B}{2} \right) \tan \left( \frac{C}{2} \right) = \sqrt{\frac{(2a - c)(a)}{(2a)^2(2a - b)^2}} \] 6. **Using \( b + c = 3a \)**: From \( b + c = 3a \), we can express \( c \) as \( c = 3a - b \). Substituting this into the equation: \[ 2a - c = 2a - (3a - b) = b - a \] 7. **Final Calculation**: Now we have: \[ \tan \left( \frac{B}{2} \right) \tan \left( \frac{C}{2} \right) = \sqrt{\frac{(b - a)(a)}{(2a)^2(2a - b)^2}} \] After simplification, we find: \[ = \frac{a}{2a} = \frac{1}{2} \] ### Conclusion: Thus, the value of \( \tan \left( \frac{B}{2} \right) \tan \left( \frac{C}{2} \right) \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

Let A, B and C are the angles of a plain triangle and tan(A/2)=1/3,tan(B/2)=2/3 .then tan(C/2) is equal to

If A + B + C = pi and sin(A +C/2)= ksin(C/2) , then tan(A/2).tan(B/2) is equal to

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

In a DeltaABC,(a+c)/(a-c)tan(B/2) is equal to

Show that in any triangle ABC, (a+b+c) (tan (A/2) + tan (B/2)) = 2c cot (C/2)

In in a triangle ABC , sides a,b,c are in A.P. then tan""A/2 tan""C/2

If in the triangle ABC, "tan"(A)/(2), "tan"(B)/(2) and "tan"(C )/(2) are in harmonic progression then the least value of "cot"^(2)(B)/(2) is equal to :

In any Delta ABC the value of 1-tan""B/2 tan""C/2 is equal to :-

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , i...

    Text Solution

    |

  2. If in a triangle ABC,(a^(2)-b^(2))/(a^(2)+b^(2))= sin(A-B)/sin(A+B) th...

    Text Solution

    |

  3. If in a triangle ABC, b + c = 3a, then tan(B/2)tan(C/2) is equal to

    Text Solution

    |

  4. Let ABC be a triangle such that angle A =45^(@) , angle B =75^(@), the...

    Text Solution

    |

  5. If in a DeltaABC , cos A + 2 cosB+cosC= 2, then a,b, c are in

    Text Solution

    |

  6. If the altitudes of a triangle are in A.P,then the sides of the triang...

    Text Solution

    |

  7. In any triangle ABC ,the distance of the orthocentre from the vertice...

    Text Solution

    |

  8. If R is the radius of circumscribing circle of a regular polygon of n-...

    Text Solution

    |

  9. If r is the radius of inscribed circle of a regular polygon of n-sides...

    Text Solution

    |

  10. The area of a regular polygon of n sides is (where r is inradius, R is...

    Text Solution

    |

  11. If r,r(1) ,r(2), r(3) have their usual meanings , the value of 1/(r(1)...

    Text Solution

    |

  12. If p(1), p (2), p(3) are respectively the perpendicular from the verti...

    Text Solution

    |

  13. If p(1), p(2),p(3) are respectively the perpendiculars from the vertic...

    Text Solution

    |

  14. If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2), then the triangle ABC...

    Text Solution

    |

  15. If A(1),A(2),A(3) denote respectively the areas of an inscribed polygo...

    Text Solution

    |

  16. If the angles of a triangle are in A.P.with common difference equal 1/...

    Text Solution

    |

  17. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal...

    Text Solution

    |

  18. If the sides a, b, c of a triangle ABC are the roots of the equation x...

    Text Solution

    |

  19. The area of a DeltaABC is b^(2)-(c-a)^(2). Then ,tan B =

    Text Solution

    |

  20. If in a triangle ABC, (sinA)/(sinC) = (sin(A-B))/(sin(B-C)), then

    Text Solution

    |