Home
Class 12
MATHS
If in a triangle ABC, 3 sin A = 6 sin B...

If in a triangle `ABC, 3 sin A = 6 sin B=2sqrt3sin C`, then the angle A is

A

`0^(@)`

B

`30^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Step 1: Set up the equation** Given: \[ 3 \sin A = 6 \sin B = 2\sqrt{3} \sin C \] **Step 2: Simplify the equation** Divide the entire equation by 3: \[ \sin A = 2 \sin B = \frac{2\sqrt{3}}{3} \sin C \] **Step 3: Express sin values in terms of sides** Using the sine rule, we know: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] Where \( R \) is the circumradius of the triangle. From the sine rule, we can express: \[ \sin A = \frac{a}{2R}, \quad \sin B = \frac{b}{2R}, \quad \sin C = \frac{c}{2R} \] **Step 4: Substitute the sine values** Substituting these into our simplified equation: \[ \frac{a}{2R} = 2 \cdot \frac{b}{2R} = \frac{2\sqrt{3}}{3} \cdot \frac{c}{2R} \] This simplifies to: \[ a = 2b \quad \text{and} \quad a = \frac{2\sqrt{3}}{3}c \] **Step 5: Relate the sides** From \( a = 2b \), we can express \( b \) in terms of \( a \): \[ b = \frac{a}{2} \] From \( a = \frac{2\sqrt{3}}{3}c \), we can express \( c \) in terms of \( a \): \[ c = \frac{3a}{2\sqrt{3}} \] **Step 6: Use the cosine rule** Now, we can use the cosine rule to find \( \cos A \): \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting the values of \( b \) and \( c \): \[ b = \frac{a}{2}, \quad c = \frac{3a}{2\sqrt{3}} \] **Step 7: Calculate \( b^2 \) and \( c^2 \)** Calculating \( b^2 \) and \( c^2 \): \[ b^2 = \left(\frac{a}{2}\right)^2 = \frac{a^2}{4} \] \[ c^2 = \left(\frac{3a}{2\sqrt{3}}\right)^2 = \frac{9a^2}{12} = \frac{3a^2}{4} \] **Step 8: Substitute into cosine rule** Now substituting into the cosine rule: \[ \cos A = \frac{\frac{a^2}{4} + \frac{3a^2}{4} - a^2}{2 \cdot \frac{a}{2} \cdot \frac{3a}{2\sqrt{3}}} \] \[ = \frac{a^2 - a^2}{\frac{3a^2}{2\sqrt{3}}} = 0 \] **Step 9: Solve for angle A** Since \( \cos A = 0 \), it follows that: \[ A = 90^\circ \] Thus, the angle \( A \) is \( 90^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

If in a triangle ABC sin A = 4/5 and sin B = 12/13 , then sin C =

If in a triangle ABC ,a sin A=b sin B, then the triangle, is

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. The area of a DeltaABC is b^(2)-(c-a)^(2). Then ,tan B =

    Text Solution

    |

  2. If in a triangle ABC, (sinA)/(sinC) = (sin(A-B))/(sin(B-C)), then

    Text Solution

    |

  3. If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C, then the angle A...

    Text Solution

    |

  4. The sides of a triangle are in A.P. and its area is (3)/(5) th of an e...

    Text Solution

    |

  5. In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2si...

    Text Solution

    |

  6. In any triangle ABC ,(tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal ...

    Text Solution

    |

  7. If the sides a,b and c of a ABC are in A.P.,then (tan(A/2)+tan(C/2))...

    Text Solution

    |

  8. If the sides of the triangle are the roots of the equation x^(3)-2x^(...

    Text Solution

    |

  9. If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)...

    Text Solution

    |

  10. If a DeltaABC is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  11. If a^(2),b^(2),c^(2) are in A.P.,then which of the following is also i...

    Text Solution

    |

  12. If in a Delta ABC, sin ^(3) A + sin ^(3) B+ sin ^(3) C =3 sin A .Sin...

    Text Solution

    |

  13. If the ex-radii of a triangle are in H.P.,then the corresponding sides...

    Text Solution

    |

  14. If I is the incentre of a !ABC , then IA:IB:IC is equal to

    Text Solution

    |

  15. In a triangle ABC ,the HM of the ex-radii is equal to

    Text Solution

    |

  16. In a DeltaABC if r(1):r(2):r(3)=2:4:6, then a:b:c =

    Text Solution

    |

  17. If in a !ABC,angleA=pi//3 and AD is a median , then

    Text Solution

    |

  18. In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

    Text Solution

    |

  19. The base of a triangle is 80cm and one of the base angles is 60^(@).If...

    Text Solution

    |

  20. In a DeltaABC if r(1)=16,r(2)=48 and r(3)=24, then its in-radius ,is

    Text Solution

    |