Home
Class 12
MATHS
In a triangle sin^(4)A + sin^(4)B + sin^...

In a triangle `sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B`, then its angle A is equal to-

A

`(pi)/6,(5pi)/6`

B

`(pi)/3,(5pi)/6`

C

`(5pi)/6,(2pi)/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B \) and find the angle \( A \), we can follow these steps: ### Step 1: Rewrite the equation using the sine rule Using the sine rule, we know that \( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \). We can express \( \sin A, \sin B, \sin C \) in terms of the sides \( a, b, c \): \[ \sin A = \frac{a}{k}, \quad \sin B = \frac{b}{k}, \quad \sin C = \frac{c}{k} \] where \( k \) is a constant. ### Step 2: Substitute the sine values into the equation Substituting these values into the equation gives: \[ \left(\frac{a}{k}\right)^4 + \left(\frac{b}{k}\right)^4 + \left(\frac{c}{k}\right)^4 = \left(\frac{b}{k}\right)^2 \left(\frac{c}{k}\right)^2 + 2 \left(\frac{c}{k}\right)^2 \left(\frac{a}{k}\right)^2 + 2 \left(\frac{a}{k}\right)^2 \left(\frac{b}{k}\right)^2 \] Multiplying through by \( k^4 \) (to eliminate the denominators) results in: \[ a^4 + b^4 + c^4 = b^2 c^2 + 2c^2 a^2 + 2a^2 b^2 \] ### Step 3: Rearranging the equation Rearranging gives: \[ a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2 - 2b^2c^2 = 0 \] ### Step 4: Recognizing a perfect square We can recognize that the left-hand side can be factored as: \[ (b^2 + c^2 - a^2)^2 = 3b^2c^2 \] ### Step 5: Using the cosine rule From the cosine rule, we know: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting this into our equation gives: \[ (b^2 + c^2 - a^2)^2 = 3b^2c^2 \] This leads to: \[ (2bc \cos A)^2 = 3b^2c^2 \] ### Step 6: Simplifying the equation Dividing both sides by \( b^2c^2 \) gives: \[ 4 \cos^2 A = 3 \] Thus, \[ \cos^2 A = \frac{3}{4} \] ### Step 7: Finding angle A Taking the square root gives: \[ \cos A = \pm \frac{\sqrt{3}}{2} \] This implies: \[ A = \frac{\pi}{6} \quad \text{or} \quad A = \frac{5\pi}{6} \] ### Conclusion Thus, the angle \( A \) can be either \( \frac{\pi}{6} \) or \( \frac{5\pi}{6} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C, then the angle A...

    Text Solution

    |

  2. The sides of a triangle are in A.P. and its area is (3)/(5) th of an e...

    Text Solution

    |

  3. In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2si...

    Text Solution

    |

  4. In any triangle ABC ,(tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal ...

    Text Solution

    |

  5. If the sides a,b and c of a ABC are in A.P.,then (tan(A/2)+tan(C/2))...

    Text Solution

    |

  6. If the sides of the triangle are the roots of the equation x^(3)-2x^(...

    Text Solution

    |

  7. If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)...

    Text Solution

    |

  8. If a DeltaABC is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  9. If a^(2),b^(2),c^(2) are in A.P.,then which of the following is also i...

    Text Solution

    |

  10. If in a Delta ABC, sin ^(3) A + sin ^(3) B+ sin ^(3) C =3 sin A .Sin...

    Text Solution

    |

  11. If the ex-radii of a triangle are in H.P.,then the corresponding sides...

    Text Solution

    |

  12. If I is the incentre of a !ABC , then IA:IB:IC is equal to

    Text Solution

    |

  13. In a triangle ABC ,the HM of the ex-radii is equal to

    Text Solution

    |

  14. In a DeltaABC if r(1):r(2):r(3)=2:4:6, then a:b:c =

    Text Solution

    |

  15. If in a !ABC,angleA=pi//3 and AD is a median , then

    Text Solution

    |

  16. In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

    Text Solution

    |

  17. The base of a triangle is 80cm and one of the base angles is 60^(@).If...

    Text Solution

    |

  18. In a DeltaABC if r(1)=16,r(2)=48 and r(3)=24, then its in-radius ,is

    Text Solution

    |

  19. In a △ ABC if a =26, b= 30 and cos C =63/65, then r(2) =

    Text Solution

    |

  20. In a triangle ABC if sides a = 13, b =14 and c = 15, then reciprocals...

    Text Solution

    |