Home
Class 12
MATHS
If the sides a,b and c of a ABC are in A...

If the sides a,b and c of a ABC are in A.P.,then
`(tan(A/2)+tan(C/2)):cot(B/2)`, is

A

`3:2`

B

`1:2`

C

`3:4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{\tan(A/2) + \tan(C/2)}{\cot(B/2)} \) given that the sides \( a, b, c \) of triangle \( ABC \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: Since the sides \( a, b, c \) are in A.P., we can express this as: \[ a + c = 2b \] 2. **Using Half-Angle Formulas**: We will use the half-angle formulas for tangent: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \] \[ \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \] where \( s = \frac{a+b+c}{2} \). 3. **Substituting the Values**: Substitute \( s \) into the formulas: \[ s = \frac{a+b+c}{2} = \frac{a + b + (2b - a)}{2} = \frac{3b}{2} \] Now substituting this into the half-angle formulas: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \] \[ \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \] 4. **Calculating \( \tan(A/2) + \tan(C/2) \)**: We can express: \[ \tan\left(\frac{A}{2}\right) + \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \] Simplifying this expression will lead us to a common denominator. 5. **Finding \( \cot(B/2) \)**: The cotangent of half angle can be expressed as: \[ \cot\left(\frac{B}{2}\right) = \frac{1}{\tan\left(\frac{B}{2}\right)} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \] 6. **Forming the Ratio**: Now we can form the ratio: \[ \frac{\tan\left(\frac{A}{2}\right) + \tan\left(\frac{C}{2}\right)}{\cot\left(\frac{B}{2}\right)} \] 7. **Simplifying the Ratio**: After substituting the values and simplifying, we find: \[ \frac{\tan\left(\frac{A}{2}\right) + \tan\left(\frac{C}{2}\right)}{\cot\left(\frac{B}{2}\right)} = \frac{2}{3} \] Thus, the ratio simplifies to: \[ \frac{2}{3} \] 8. **Final Result**: Therefore, the final answer is: \[ \frac{\tan(A/2) + \tan(C/2)}{\cot(B/2)} = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If in Delta ABC , sides a, b, c are in A.P. then

If the sides a,b,c are in A.P., prove that (tan)A/2+ (tan) c/2=2/3( cot) B/2.

In in a triangle ABC , sides a,b,c are in A.P. then tan""A/2 tan""C/2

Sides a , b , c of !ABC are in A.P. and costheta_(1)=a/(b+c)costheta_(2)=b/(a+c),costheta_(3)=c/(a+b) , then tan^(2)(theta_(1))/2+tan^(2)(theta_(3))/2 =

In DeltaABC , prove that: (a+b+c).(tan(A/2)+tan(B/2))=2c cot(C/2)

Show that in any triangle ABC, (a+b+c) (tan (A/2) + tan (B/2)) = 2c cot (C/2)

If in a DeltaABC, sin A, sin B, sin C are in A.P., show that 3 tan, A/2 tan, C/2 = 1

In DeltaABC , if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot(C/2) are also in A.P.

In a "DeltaA B C prove that tan(("A"+"B")/2)=cot("C"/2)

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2si...

    Text Solution

    |

  2. In any triangle ABC ,(tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal ...

    Text Solution

    |

  3. If the sides a,b and c of a ABC are in A.P.,then (tan(A/2)+tan(C/2))...

    Text Solution

    |

  4. If the sides of the triangle are the roots of the equation x^(3)-2x^(...

    Text Solution

    |

  5. If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)...

    Text Solution

    |

  6. If a DeltaABC is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  7. If a^(2),b^(2),c^(2) are in A.P.,then which of the following is also i...

    Text Solution

    |

  8. If in a Delta ABC, sin ^(3) A + sin ^(3) B+ sin ^(3) C =3 sin A .Sin...

    Text Solution

    |

  9. If the ex-radii of a triangle are in H.P.,then the corresponding sides...

    Text Solution

    |

  10. If I is the incentre of a !ABC , then IA:IB:IC is equal to

    Text Solution

    |

  11. In a triangle ABC ,the HM of the ex-radii is equal to

    Text Solution

    |

  12. In a DeltaABC if r(1):r(2):r(3)=2:4:6, then a:b:c =

    Text Solution

    |

  13. If in a !ABC,angleA=pi//3 and AD is a median , then

    Text Solution

    |

  14. In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

    Text Solution

    |

  15. The base of a triangle is 80cm and one of the base angles is 60^(@).If...

    Text Solution

    |

  16. In a DeltaABC if r(1)=16,r(2)=48 and r(3)=24, then its in-radius ,is

    Text Solution

    |

  17. In a △ ABC if a =26, b= 30 and cos C =63/65, then r(2) =

    Text Solution

    |

  18. In a triangle ABC if sides a = 13, b =14 and c = 15, then reciprocals...

    Text Solution

    |

  19. In a A B C , ifsinAa n dsinB are the roots of the equation c^2x^2-c(a...

    Text Solution

    |

  20. If a , b , c denote the sides of a !ABC such that the equation x^(2)+...

    Text Solution

    |