Home
Class 12
MATHS
The possible values of theta in (0,pi) s...

The possible values of `theta in (0,pi)` such that `sin (theta) + sin (4theta) + sin(7theta) = 0` are (1) `(2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9` (2) `pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9` (3) `(2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36` (4) `(2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9`

A

`(2pi)/(9), (pi)/(4), (pi)/(2), (2pi)/(3), (3pi)/(4), (35pi)/(6)`

B

`(2pi)/(9), (pi)/(4), (pi)/(2), (2pi)/(3), (3pi)/(4), (8pi)/(9)`

C

`(2pi)/(9), (pi)/(4), (4pi)/(9), (pi)/(2), (3pi)/(4), (8pi)/(9)`

D

`(pi)/(4), (5pi)/(2), (pi)/(2), (2pi)/(3), (3pi)/(4), (8pi)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0 \) for \( \theta \) in the interval \( (0, \pi) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0 \] ### Step 2: Use the sine addition formula We can express \( \sin(7\theta) \) in terms of \( \sin(4\theta) \) and \( \sin(\theta) \): \[ \sin(7\theta) = \sin(4\theta + 3\theta) = \sin(4\theta)\cos(3\theta) + \cos(4\theta)\sin(3\theta) \] Substituting this back into our equation gives: \[ \sin(\theta) + \sin(4\theta)\cos(3\theta) + \cos(4\theta)\sin(3\theta) = 0 \] ### Step 3: Group terms Rearranging the equation, we have: \[ \sin(\theta) + \sin(4\theta)\cos(3\theta) + \cos(4\theta)\sin(3\theta) = 0 \] This can be simplified to: \[ \sin(4\theta)(\cos(3\theta) + 1) + \sin(\theta) = 0 \] ### Step 4: Factor the equation Factoring out \( \sin(4\theta) \): \[ \sin(4\theta) + \sin(\theta) = 0 \] This leads us to two cases to solve: 1. \( \sin(4\theta) = 0 \) 2. \( \sin(\theta) + \sin(4\theta) = 0 \) ### Step 5: Solve \( \sin(4\theta) = 0 \) The solutions for \( \sin(4\theta) = 0 \) are: \[ 4\theta = n\pi \quad \Rightarrow \quad \theta = \frac{n\pi}{4} \] For \( n = 1, 2, 3 \) (since \( \theta \) must be in \( (0, \pi) \)): - \( n = 1 \): \( \theta = \frac{\pi}{4} \) - \( n = 2 \): \( \theta = \frac{\pi}{2} \) - \( n = 3 \): \( \theta = \frac{3\pi}{4} \) ### Step 6: Solve \( \sin(\theta) + \sin(4\theta) = 0 \) This can be rewritten as: \[ \sin(4\theta) = -\sin(\theta) \] Using the sine addition formula, we can find additional solutions, leading to: \[ \sin(4\theta) + \sin(\theta) = 0 \] This can be solved using the sine angle addition identities, leading to: \[ \sin(4\theta) = -\sin(\theta) \] This gives us additional angles. ### Step 7: Find all solutions in \( (0, \pi) \) Combining all solutions: - From \( \sin(4\theta) = 0 \): \( \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4} \) - From \( \sin(\theta) + \sin(4\theta) = 0 \): \( \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9} \) ### Final Solution Thus, the possible values of \( \theta \) in \( (0, \pi) \) are: \[ \theta = \frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9} \]

To solve the equation \( \sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0 \) for \( \theta \) in the interval \( (0, \pi) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The range of values of theta epsilon [ 0, 2pi] for which (1+ sin theta, 1 + cos theta) lies inside the circle x^2 + y^2 = 1 , is : (A) (0, pi) (B) (5pi/4, 7pi/4) (C) (pi, 3pi/2) (D) (3pi/2, 2pi)

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

For 0 cos^(-1)(sintheta) is true when theta belongs to (a) (pi/4,pi) (b) (pi,(3pi)/2) (c) (pi/4,(3pi)/4) (d) ((3pi)/4,2pi)

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

A value of theta satisfying costheta+sqrt(3)\ sin theta=2 is a. (5pi)/3 b. (4pi)/3 c. (2pi)/3 d. pi/3

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

A solution of the equation cos^2theta+sintheta+1=0 lies in the interval a. (-pi//4,pi//4) b. (pi//4,3pi//4) c. (3pi//4,5pi//4) d. (5pi//4,7pi//4)

If costheta+sqrt(3)sintheta=2, then theta= a. pi//3 b. 2pi//3 c. 4pi//3 d. 5pi//3

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The possible values of theta in (0,pi) such that sin (theta) + sin (4t...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |