Home
Class 12
MATHS
If 0 le x le 2pi, then the number of rea...

If `0 le x le 2pi`, then the number of real values of x, which satisfy the equation `cos x + cos 2x + cos 3x + cos 4x=0`, is

A

3

B

5

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) for \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Group the Cosine Terms We can group the terms in pairs: \[ \cos x + \cos 4x + \cos 2x + \cos 3x = 0 \] ### Step 2: Use the Cosine Addition Formula Using the cosine addition formula, we can rewrite the pairs: \[ \cos x + \cos 4x = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{3x}{2}\right) \] \[ \cos 2x + \cos 3x = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) \] ### Step 3: Combine the Results Now, we can combine these results: \[ 2 \cos\left(\frac{5x}{2}\right) \left( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) \right) = 0 \] ### Step 4: Set Each Factor to Zero This gives us two cases to solve: 1. \( \cos\left(\frac{5x}{2}\right) = 0 \) 2. \( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \) ### Step 5: Solve the First Case For \( \cos\left(\frac{5x}{2}\right) = 0 \): \[ \frac{5x}{2} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] \[ x = \frac{2}{5} \left(\frac{\pi}{2} + n\pi\right) = \frac{\pi}{5} + \frac{2n\pi}{5} \] We need to find values of \( n \) such that \( 0 \leq x \leq 2\pi \): - For \( n = 0 \): \( x = \frac{\pi}{5} \) - For \( n = 1 \): \( x = \frac{7\pi}{5} \) - For \( n = 2 \): \( x = \frac{13\pi}{5} \) (not valid as it exceeds \( 2\pi \)) Thus, from this case, we have two solutions: \( x = \frac{\pi}{5}, \frac{7\pi}{5} \). ### Step 6: Solve the Second Case For \( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \): Using the identity \( \cos A + \cos B = 0 \): \[ \cos\left(\frac{3x}{2}\right) = -\cos\left(\frac{x}{2}\right) \] This implies: \[ \frac{3x}{2} = \pi + \frac{x}{2} + 2k\pi \quad (k \in \mathbb{Z}) \] Solving for \( x \): \[ \frac{3x}{2} - \frac{x}{2} = \pi + 2k\pi \] \[ x = \pi + 2k\pi \] Valid values of \( k \) for \( 0 \leq x \leq 2\pi \): - For \( k = 0 \): \( x = \pi \) - For \( k = 1 \): \( x = 3\pi \) (not valid) Thus, from this case, we have one solution: \( x = \pi \). ### Step 7: Combine All Solutions Combining all the solutions we found: - From the first case: \( x = \frac{\pi}{5}, \frac{7\pi}{5} \) - From the second case: \( x = \pi \) Thus, the total number of solutions is: \[ \frac{\pi}{5}, \pi, \frac{7\pi}{5} \] This gives us a total of **three distinct solutions**. ### Final Answer The number of real values of \( x \) that satisfy the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) in the interval \( 0 \leq x \leq 2\pi \) is **3**.

To solve the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) for \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Group the Cosine Terms We can group the terms in pairs: \[ \cos x + \cos 4x + \cos 2x + \cos 3x = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

Find the number of value of x in [0,5pi] satisying the equation 3 cos^2 x -10 cos x +7=0

Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) = 0 is equal to

If 0 le x le (pi)/(2) , then the number of value of x for which sin x - sin 2x + sin 3x = 0 , is

The number of values of x which satify the equation cos^(2)x =1 and x^(2) le 20 are _________

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos x* sin^(3) x , 0 le x le 2pi .

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos * sin^(3) x , 0 le x le 2pi .

Solve the equation for 0 le x le 2pi. sin x cos x =0

Find the values of x in (-pi,pi) which satisfy the equation 8^(1+|cosx|+|cos^2x|+|cos^3x|+...))=4^3

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If 0 le x le 2pi, then the number of real values of x, which satisfy t...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |