Home
Class 12
MATHS
The number of distinct real roots of |(s...

The number of distinct real roots of `|(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0` in the interval `-(pi)/4 le x le t (pi)/4` is

A

0

B

2

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of distinct real roots of the determinant equation \[ \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0 \] in the interval \(-\frac{\pi}{4} \leq x \leq t \frac{\pi}{4}\), we will follow these steps: ### Step 1: Calculate the Determinant We start by calculating the determinant of the matrix: \[ D = \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix, we can expand it: \[ D = \sin x \begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} - \cos x \begin{vmatrix} \cos x & \cos x \\ \cos x & \sin x \end{vmatrix} + \cos x \begin{vmatrix} \cos x & \sin x \\ \cos x & \cos x \end{vmatrix} \] Calculating the \(2 \times 2\) determinants: 1. \(\begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} = \sin^2 x - \cos^2 x = \sin^2 x - \cos^2 x\) 2. \(\begin{vmatrix} \cos x & \cos x \\ \cos x & \sin x \end{vmatrix} = \cos x \sin x - \cos^2 x = \cos x (\sin x - \cos x)\) 3. \(\begin{vmatrix} \cos x & \sin x \\ \cos x & \cos x \end{vmatrix} = \cos^2 x - \sin x \cos x = \cos^2 x - \sin x \cos x\) Substituting these back into the determinant: \[ D = \sin x (\sin^2 x - \cos^2 x) - \cos x (\cos x (\sin x - \cos x)) + \cos x (\cos^2 x - \sin x \cos x) \] ### Step 2: Simplify the Expression Now we simplify \(D\): \[ D = \sin x (\sin^2 x - \cos^2 x) - \cos^2 x (\sin x - \cos x) + \cos x (\cos^2 x - \sin x \cos x) \] Combining like terms and simplifying will yield a polynomial in terms of \(\sin x\) and \(\cos x\). ### Step 3: Set the Determinant to Zero We set \(D = 0\) and solve for \(x\): \[ \sin x + 2\cos x = 0 \quad \text{and} \quad \sin x - \cos x = 0 \] From \(\sin x + 2\cos x = 0\): \[ \tan x = -2 \] From \(\sin x - \cos x = 0\): \[ \tan x = 1 \] ### Step 4: Find the Roots 1. For \(\tan x = -2\): - The general solutions are \(x = \tan^{-1}(-2) + n\pi\). 2. For \(\tan x = 1\): - The general solutions are \(x = \frac{\pi}{4} + n\pi\). ### Step 5: Determine Roots in the Given Interval Now we need to find how many of these roots fall within the interval \(-\frac{\pi}{4} \leq x \leq t \frac{\pi}{4}\). 1. For \(\tan x = -2\): - The principal value is \(x_1 = \tan^{-1}(-2)\), which is approximately \(-1.107\) (in radians). - This root is within the interval. 2. For \(\tan x = 1\): - The principal value is \(x_2 = \frac{\pi}{4}\), which is also within the interval. ### Conclusion Thus, we have two distinct roots in the interval \(-\frac{\pi}{4} \leq x \leq t \frac{\pi}{4}\). ### Final Answer The number of distinct real roots is **2**. ---

To find the number of distinct real roots of the determinant equation \[ \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x le 2 pi , is

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

The number of distinct real roots of the equation sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi) is

Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(cos 9x)+(sin 9x)/(cos 27 x)=0 in the interval (0, pi/4) is __________.

The number of solution of |cos x| =sin x in the interval 0 lt x lt 4pi is _________

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |