Home
Class 12
MATHS
find all the possible triplets (a(1), a(...

find all the possible triplets `(a_(1), a_(2), a_(3))` such that `a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0` for all real x.

A

0

B

1

C

3

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
D

We have, ltBrgt `a_(1) + a_(2) "cos" 2x + a_(3) "sin"^(2) x = 1 "for all" x`
`rArr a_(1) + a_(2) (2 "cos"^(2)x -1) + a_(3) (1-"cos"^(2) x) = 1 "for all" x`
`rArr (a_(1)-a_(2) + a_(3)-1) + (2a_(2)-a_(3)) "cos"^(2)x = 0 "for all"x`
`rArr a_(1) - a_(2) + a_(3) - 1 = 0 "and " 2a_(2) -a_(3) = 0`
`rArr a_(1) = 1-a_(2), a_(3) = 2a_(2), "where "a_(2) in R`
Thus, there are infinitely many triplets `(a_(1), a_(2), a_(3)).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

a_(1), a_(2),a_(3) in R - {0} and a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0 " for all " x in R then (a) vectors veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = 4hati + 2hatj + hatk are perpendicular to each other (b)vectors veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = hati + hatj + 2hatk are parallel to each each other (c)if vector veca=a_(1) hati+ a_(2) hatj + a_(3) hatk is of length sqrt6 units, then on of the ordered trippplet (a_(1), a_(2),a_(3)) = (1, -1,-2) (d)if 2a_(1) + 3 a_(2) + 6 a_(3) = 26 , " then " |veca hati + a_(2) hatj + a_(3) hatk | is 2sqrt6

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =

If the coefficients of 4 consecutive terms in the expansion of (1+x)^(n) are a_(1),a_(2),a_(3),a_(4) respectively, then show that (a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

a_(1),a_(2),a_(3),a_(4),a_(5), are first five terms of an A.P. such that a_(1) +a_(3) +a_(5) = -12 and a_(1) .a_(2) . a_(3) =8 . Find the first term and the common difference.

If a_(0), a_(1),a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that if E_(1) = a_(0) + a_(3) + a_(6) + …, E_(2) = a_(1) + a_(4) + a_(7) + … and E_(3) = a_(2) + a_(5) + a_(8) + ..." then " E_(1) = E_(2) = E_(3) = 3^(n-1)

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |