Home
Class 12
MATHS
If 0 le x, y le 2 pi "and cos"x + "cos" ...

If `0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=`

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(x+y) \) given the condition \( \cos x + \cos y = -2 \) and that \( 0 \leq x, y \leq 2\pi \). ### Step-by-Step Solution: 1. **Understanding the Condition**: The equation \( \cos x + \cos y = -2 \) implies that both \( \cos x \) and \( \cos y \) must take their minimum possible values. The cosine function ranges from -1 to 1. Therefore, the only way for their sum to equal -2 is if both \( \cos x \) and \( \cos y \) are equal to -1. **Hint**: Recall that the cosine function achieves its minimum value of -1 at specific angles. 2. **Finding Values of \( x \) and \( y \)**: Since \( \cos x = -1 \), we find the angle \( x \) in the range \( [0, 2\pi] \): \[ x = \pi \] Similarly, for \( \cos y = -1 \): \[ y = \pi \] **Hint**: Identify the angles where the cosine function equals -1. 3. **Calculating \( x + y \)**: Now that we have \( x = \pi \) and \( y = \pi \), we can calculate \( x + y \): \[ x + y = \pi + \pi = 2\pi \] **Hint**: Add the values of \( x \) and \( y \) to find the sum. 4. **Finding \( \cos(x+y) \)**: We need to find \( \cos(x+y) \): \[ \cos(x+y) = \cos(2\pi) \] We know that: \[ \cos(2\pi) = 1 \] **Hint**: Recall the value of cosine at key angles, particularly at multiples of \( 2\pi \). 5. **Final Answer**: Therefore, the value of \( \cos(x+y) \) is: \[ \boxed{1} \]

To solve the problem, we need to find the value of \( \cos(x+y) \) given the condition \( \cos x + \cos y = -2 \) and that \( 0 \leq x, y \leq 2\pi \). ### Step-by-Step Solution: 1. **Understanding the Condition**: The equation \( \cos x + \cos y = -2 \) implies that both \( \cos x \) and \( \cos y \) must take their minimum possible values. The cosine function ranges from -1 to 1. Therefore, the only way for their sum to equal -2 is if both \( \cos x \) and \( \cos y \) are equal to -1. **Hint**: Recall that the cosine function achieves its minimum value of -1 at specific angles. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 0 le x, y le pi "and sin"x + "sin" y = 2, "then"x + y =

If 0 le x le 3 pi , 0 le y le 3 pi and cos x * sin y=1 , then find the possible number of values of the orederd pair (x,y) .

If 0 le x le (pi)/(2) and sin^(2)x=a and cos^(2)x=b , then sin 2x+cos 2x=

If x+ sin y = 2014 and x+ 2014 cos y = 2013, 0 le y le (pi)/(2) , then find the value of [ x + y] - 2005 (where [.] denotes greatest integer function)

If 0 le x le 2pi , then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)

y - 2x le 1, x + y le 2, x ge 0, y ge 0

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If 0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |