Home
Class 12
MATHS
If |(cos(A+B),-sin(A+B),cos2B),(sinA,cos...

If `|(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0` then B =

A

`(2n + 1)pi//2, n in Z`

B

`npi, n in Z`

C

`(2n + 1) pi, n in Z`

D

`2n pi, n inZ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{vmatrix} \cos(A+B) & -\sin(A+B) & \cos(2B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{vmatrix} \] ### Step 1: Expand the Determinant We will expand the determinant along the first row (R1): \[ D = \cos(A+B) \begin{vmatrix} \cos A & \sin B \\ \sin A & \cos B \end{vmatrix} - (-\sin(A+B)) \begin{vmatrix} \sin A & \sin B \\ -\cos A & \cos B \end{vmatrix} + \cos(2B) \begin{vmatrix} \sin A & \cos A \\ -\cos A & \sin A \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. **First Determinant:** \[ \begin{vmatrix} \cos A & \sin B \\ \sin A & \cos B \end{vmatrix} = \cos A \cos B - \sin A \sin B = \cos(A+B) \] 2. **Second Determinant:** \[ \begin{vmatrix} \sin A & \sin B \\ -\cos A & \cos B \end{vmatrix} = \sin A \cos B + \sin B \cos A = \sin(A+B) \] 3. **Third Determinant:** \[ \begin{vmatrix} \sin A & \cos A \\ -\cos A & \sin A \end{vmatrix} = \sin^2 A + \cos^2 A = 1 \] ### Step 3: Substitute Back into the Determinant Expression Now substituting these back into the determinant: \[ D = \cos(A+B) \cdot \cos(A+B) + \sin(A+B) \cdot \sin(A+B) + \cos(2B) \cdot 1 \] This simplifies to: \[ D = \cos^2(A+B) + \sin^2(A+B) + \cos(2B) \] Using the Pythagorean identity: \[ D = 1 + \cos(2B) \] ### Step 4: Set the Determinant Equal to Zero We set the determinant equal to zero: \[ 1 + \cos(2B) = 0 \] This implies: \[ \cos(2B) = -1 \] ### Step 5: Solve for B The cosine function equals -1 at odd multiples of \(\pi\): \[ 2B = (2n + 1)\pi \quad \text{for } n \in \mathbb{Z} \] Thus, dividing by 2 gives: \[ B = \frac{(2n + 1)\pi}{2} \] ### Final Answer The solution for \(B\) is: \[ B = \frac{(2n + 1)\pi}{2}, \quad n \in \mathbb{Z} \]

To solve the problem, we need to evaluate the determinant of the given matrix and set it equal to zero. The matrix is: \[ \begin{vmatrix} \cos(A+B) & -\sin(A+B) & \cos(2B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Solve sinA.cos(A-B)-cosA.sin(A-B)

(sinA+cosA)^2+(sinA-cosA)^2=

Prove that: sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[sinB,cosA,sinB+cosB],[sinC,cosA,sinC+cosB]|=0

Prove that: (cos(A-B)+sinA-cos(A+B))/(sin(A+B)+cosA-sin(A-B))=tanA

Simplify : sinA[(sinA,-cosA),(cosA, sinA)]+cosA[(cosA,sinA),(-sinA, cosA)] .

Prove: (1+cosA)/(sinA)=(sinA)/(1-cosA)

If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2) ,if n is even, 0 if n is odd,

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0 t...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |