Home
Class 12
MATHS
"cos" 2x =(sqrt(2) + 1) ("cos"x- (1)/(sq...

`"cos" 2x =(sqrt(2) + 1) ("cos"x- (1)/(sqrt(2))),"cos" x ne (1)/(2) rArr x in `

A

`{2n pi +-(pi)/(3): n in Z}`

B

`{2npi +-(pi)/(6): n inZ}`

C

`{2npi + - (pi)/(2): n inZ}`

D

`{2npi +- (pi)/(4): n inZ}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2x = (\sqrt{2} + 1) \left( \cos x - \frac{1}{\sqrt{2}} \right) \) with the condition \( \cos x \neq \frac{1}{2} \), we will follow these steps: ### Step 1: Rewrite \( \cos 2x \) We know that \( \cos 2x \) can be expressed as: \[ \cos 2x = 2 \cos^2 x - 1 \] So, we can rewrite the equation as: \[ 2 \cos^2 x - 1 = (\sqrt{2} + 1) \left( \cos x - \frac{1}{\sqrt{2}} \right) \] ### Step 2: Expand the right-hand side Now, we will expand the right-hand side: \[ (\sqrt{2} + 1) \left( \cos x - \frac{1}{\sqrt{2}} \right) = (\sqrt{2} + 1) \cos x - (\sqrt{2} + 1) \cdot \frac{1}{\sqrt{2}} \] This simplifies to: \[ (\sqrt{2} + 1) \cos x - (1 + \frac{1}{\sqrt{2}}) \] ### Step 3: Set the equation to zero Now, we can set the equation to zero: \[ 2 \cos^2 x - 1 - \left( (\sqrt{2} + 1) \cos x - (1 + \frac{1}{\sqrt{2}}) \right) = 0 \] Rearranging gives us: \[ 2 \cos^2 x - (\sqrt{2} + 1) \cos x + \left( 1 + \frac{1}{\sqrt{2}} - 1 \right) = 0 \] This simplifies to: \[ 2 \cos^2 x - (\sqrt{2} + 1) \cos x + \frac{1}{\sqrt{2}} = 0 \] ### Step 4: Solve the quadratic equation Let \( y = \cos x \). The equation becomes: \[ 2y^2 - (\sqrt{2} + 1)y + \frac{1}{\sqrt{2}} = 0 \] We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{(\sqrt{2} + 1) \pm \sqrt{(\sqrt{2} + 1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}}}}{2 \cdot 2} \] ### Step 5: Calculate the discriminant Calculating the discriminant: \[ (\sqrt{2} + 1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 2 + 2\sqrt{2} + 1 - \frac{8}{\sqrt{2}} = 3 + 2\sqrt{2} - 4\sqrt{2} = 3 - 2\sqrt{2} \] ### Step 6: Find the roots Now substituting back into the quadratic formula: \[ y = \frac{(\sqrt{2} + 1) \pm \sqrt{3 - 2\sqrt{2}}}{4} \] ### Step 7: Find \( x \) Since we have \( y = \cos x \), we can find \( x \) using: \[ x = \cos^{-1}\left(\frac{(\sqrt{2} + 1) \pm \sqrt{3 - 2\sqrt{2}}}{4}\right) \] However, we must ensure that \( \cos x \neq \frac{1}{2} \). ### Step 8: General solution The general solution for \( x \) based on the values of \( \cos x \) will be: \[ x = 2n\pi \pm \theta \quad \text{where } \theta = \cos^{-1}\left(\frac{(\sqrt{2} + 1) \pm \sqrt{3 - 2\sqrt{2}}}{4}\right) \]

To solve the equation \( \cos 2x = (\sqrt{2} + 1) \left( \cos x - \frac{1}{\sqrt{2}} \right) \) with the condition \( \cos x \neq \frac{1}{2} \), we will follow these steps: ### Step 1: Rewrite \( \cos 2x \) We know that \( \cos 2x \) can be expressed as: \[ \cos 2x = 2 \cos^2 x - 1 \] So, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(sqrt((1+cos x)/2))

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/( sqrt( x^(2) + 2x + 2)) = tan^(-1) ( x^(2) + x + 1)

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

If cos^-1((x)/sqrt(1+x^2)) then find dy/dx

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. "cos" 2x =(sqrt(2) + 1) ("cos"x- (1)/(sqrt(2))),"cos" x ne (1)/(2) rAr...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. General solution of the equation, cos x cdot cos 6x = -1 is =

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x - "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  11. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  14. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |