Home
Class 12
MATHS
If alpha is a root of 25"cos"^(2) theta+...

If `alpha` is a root of `25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2) lt alpha lt pi, " then sin"2 alpha` is equal to

A

`(24)/(25)`

B

`-(24)/(25)`

C

`(13)/(18)`

D

`-(13)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the process outlined in the video transcript, ensuring clarity at each stage. ### Step 1: Solve the Trigonometric Equation We start with the equation: \[ 25 \cos^2 \theta + 5 \cos \theta - 12 = 0 \] This is a quadratic equation in terms of \( \cos \theta \). ### Step 2: Factor the Quadratic Equation We can rewrite the equation as: \[ 25 \cos^2 \theta + 20 \cos \theta - 15 \cos \theta - 12 = 0 \] Grouping the terms gives us: \[ (25 \cos^2 \theta + 20 \cos \theta) + (-15 \cos \theta - 12) = 0 \] Factoring out common terms: \[ 5 \cos \theta (5 \cos \theta + 4) - 3(5 \cos \theta + 4) = 0 \] This leads to: \[ (5 \cos \theta - 3)(5 \cos \theta + 4) = 0 \] ### Step 3: Find the Roots Setting each factor to zero gives us: 1. \( 5 \cos \theta - 3 = 0 \) → \( \cos \theta = \frac{3}{5} \) 2. \( 5 \cos \theta + 4 = 0 \) → \( \cos \theta = -\frac{4}{5} \) ### Step 4: Determine the Acceptable Root Since we are given that \( \frac{\pi}{2} < \alpha < \pi \), \( \alpha \) is in the second quadrant where cosine is negative. Therefore, we take: \[ \cos \alpha = -\frac{4}{5} \] ### Step 5: Calculate \( \sin \alpha \) Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] We find \( \sin \alpha \): \[ \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \[ \sin \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \] Since \( \alpha \) is in the second quadrant, \( \sin \alpha \) is positive. ### Step 6: Calculate \( \sin 2\alpha \) Using the double angle formula: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Substituting the values we found: \[ \sin 2\alpha = 2 \left(\frac{3}{5}\right) \left(-\frac{4}{5}\right) = 2 \cdot \frac{3 \cdot -4}{25} = -\frac{24}{25} \] ### Final Answer Thus, the value of \( \sin 2\alpha \) is: \[ \sin 2\alpha = -\frac{24}{25} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If 0 lt alpha lt beta lt (pi)/(2) then

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If alpha is a root of 25 cos^2theta+5costheta-12=0 , pi/2 a. (24)/(25) b. -(24)/(25) c. (13)/(18) d. -(13)/(18)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. If alpha,beta are the different values of x satisfying acosx+bsinx=c t...

    Text Solution

    |

  2. The equaltion a sin x+b cos x=c, where |c|gtsqrt(a^(2)+b^(2)) has

    Text Solution

    |

  3. If alpha is a root of 25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2)...

    Text Solution

    |

  4. If "cos 3x + "sin" (2x - (7pi)/(6)) =-2, then x =

    Text Solution

    |

  5. The number of solutions of 2"cos"^(2)((x)/(2))"sin"^(2) x =x^(2) + (1)...

    Text Solution

    |

  6. If A and B are acute positive angles satisfying the equations 3 sin^(2...

    Text Solution

    |

  7. The equation "sin" theta = x +(p)/(x) for real values of x is possible...

    Text Solution

    |

  8. If sin A = sin B and cos A= cos B, then find the value of a in terms o...

    Text Solution

    |

  9. Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi.

    Text Solution

    |

  10. If (1+tantheta)(1+tanphi)=2, then theta + phi=

    Text Solution

    |

  11. The general solution of "tan" 3x =1, is

    Text Solution

    |

  12. If 1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 0<theta<pi, t...

    Text Solution

    |

  13. If alpha a n d beta are the solutions of the equation at a ntheta+bs e...

    Text Solution

    |

  14. Solve sinx+siny=sin(x+y)a n d|x|+|y|=1

    Text Solution

    |

  15. The expression (1 + tan x + tan^2 x)(1-cot x + cot^2 x) has the positi...

    Text Solution

    |

  16. If the the equation a sin x + cos 2x=2a-7 possesses a solution, then f...

    Text Solution

    |

  17. The equation "sin"^(6) x + "cos"^(6) x = lambda, has a solution if

    Text Solution

    |

  18. If y + "cos" theta = "sin" theta has a real solution, then

    Text Solution

    |

  19. The solution set of the equation 4 sin theta. Cos theta-2 cos theta-2s...

    Text Solution

    |

  20. The most general solution of tan theta =-1 and cos theta = 1/(sqrt(2))...

    Text Solution

    |